論文の概要: Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images
- arxiv url: http://arxiv.org/abs/2304.09656v1
- Date: Wed, 19 Apr 2023 13:45:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 14:24:47.742942
- Title: Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images
- Title(参考訳): マイクロインサイトハイブリダイゼーション画像の解析と分類のためのオートエンコーダの最適化
- Authors: Aleksandar A. Yanev, Galina D. Momcheva, Stoyan P. Pavlov
- Abstract要約: 同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, analysis of microscopic In Situ Hybridization images is done
manually by experts. Precise evaluation and classification of such microscopic
images can ease experts' work and reveal further insights about the data. In
this work, we propose a deep-learning framework to detect and classify areas of
microscopic images with similar levels of gene expression. The data we analyze
requires an unsupervised learning model for which we employ a type of
Artificial Neural Network - Deep Learning Autoencoders. The model's performance
is optimized by balancing the latent layers' length and complexity and
fine-tuning hyperparameters. The results are validated by adapting the
mean-squared error (MSE) metric, and comparison to expert's evaluation.
- Abstract(参考訳): 現在、顕微鏡によるInsituハイブリダイゼーション画像の解析は専門家によって手作業で行われている。
このような顕微鏡画像の精密な評価と分類は専門家の作業を容易にし、データに関するさらなる洞察を明らかにすることができる。
本研究では,顕微鏡画像の領域を類似のレベルの遺伝子発現で検出・分類するディープラーニングフレームワークを提案する。
分析するデータには教師なしの学習モデルが必要で、それは一種の人工ニューラルネットワーク(ディープラーニングオートエンコーダ)を使っています。
モデルの性能は、潜在層の長さと複雑さと微調整ハイパーパラメータのバランスをとることで最適化される。
結果は,平均二乗誤差(MSE)測定値に適応し,専門家の評価と比較することによって検証される。
関連論文リスト
- CoTCoNet: An Optimized Coupled Transformer-Convolutional Network with an Adaptive Graph Reconstruction for Leukemia Detection [0.3573481101204926]
白血病の分類のためのCoTCoNet(Coupled Transformer Convolutional Network)フレームワークを提案する。
我々のフレームワークは、包括的グローバル特徴とスケーラブルな空間パターンを捉え、複雑で大規模な血液学的特徴の同定を可能にする。
それぞれ0.9894と0.9893のF1スコアレートを達成している。
論文 参考訳(メタデータ) (2024-10-11T13:31:28Z) - TSynD: Targeted Synthetic Data Generation for Enhanced Medical Image Classification [0.011037620731410175]
この研究は、生成モデルを誘導し、高い不確実性でデータを合成することを目的としている。
最適化プロセスによりオートエンコーダの特徴空間を変更する。
我々は,複数の分類タスクに対するテスト時間データ拡張と敵攻撃に対する堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-06-25T11:38:46Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Magnification Invariant Medical Image Analysis: A Comparison of
Convolutional Networks, Vision Transformers, and Token Mixers [2.3859625728972484]
畳み込みニューラルネットワーク(CNN)は医用画像解析に広く用いられている。
テスト画像の倍率がトレーニング画像と異なる場合、その性能は低下する。
本研究の目的は,様々なディープラーニングアーキテクチャの堅牢性を評価することである。
論文 参考訳(メタデータ) (2023-02-22T16:44:41Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Multi-element microscope optimization by a learned sensing network with
composite physical layers [3.2435888122704037]
デジタル顕微鏡は、コンピュータアルゴリズムによる自動解釈のために画像をキャプチャするために使用される。
本研究では,複数の顕微鏡設定を協調的に最適化する手法と分類ネットワークについて検討する。
ネットワークの低分解能顕微鏡画像(20X-comparable)は、対応する高分解能画像の分類性能に匹敵する十分なコントラストを有する機械学習ネットワークを提供することを示す。
論文 参考訳(メタデータ) (2020-06-27T16:49:37Z) - A Spatially Constrained Deep Convolutional Neural Network for Nerve
Fiber Segmentation in Corneal Confocal Microscopic Images using Inaccurate
Annotations [10.761046991755311]
本研究では,スムーズかつロバストな画像分割を実現するために,空間拘束型深部畳み込みニューラルネットワーク(DCNN)を提案する。
提案手法は神経線維分節に対する角膜共焦点顕微鏡(CCM)画像に基づいて評価された。
論文 参考訳(メタデータ) (2020-04-20T16:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。