Quantum Embedding Search for Quantum Machine Learning
- URL: http://arxiv.org/abs/2105.11853v1
- Date: Tue, 25 May 2021 11:50:57 GMT
- Title: Quantum Embedding Search for Quantum Machine Learning
- Authors: Nam Nguyen and Kwang-Chen Chen
- Abstract summary: We introduce a novel quantum embedding search algorithm (QES), pronounced as "quest"
We establish the connection between the structures of quantum embedding and the representations of directed multi-graphs, enabling a well-defined search space.
We demonstrate the feasibility of our proposed approach on synthesis and Iris datasets, which empirically shows that quantum embedding architecture by QES outperforms manual designs.
- Score: 2.7612093695074456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel quantum embedding search algorithm (QES,
pronounced as "quest"), enabling search for optimal quantum embedding design
for a specific dataset of interest. First, we establish the connection between
the structures of quantum embedding and the representations of directed
multi-graphs, enabling a well-defined search space. Second, we instigate the
entanglement level to reduce the cardinality of the search space to a feasible
size for practical implementations. Finally, we mitigate the cost of evaluating
the true loss function by using surrogate models via sequential model-based
optimization. We demonstrate the feasibility of our proposed approach on
synthesis and Iris datasets, which empirically shows that found quantum
embedding architecture by QES outperforms manual designs whereas achieving
comparable performance to classical machine learning models.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Trainability maximization using estimation of distribution algorithms assisted by surrogate modelling for quantum architecture search [8.226785409557598]
Quantum architecture search (QAS) involves optimizing both the quantum parametric circuit configuration but also its parameters for a variational quantum algorithm.
In this paper, we aim to achieve two improvements in QAS: (1) to reduce the number of measurements by an online surrogate model of the evaluation process that aggressively discards architectures of poor performance; (2) to avoid training the circuits when BPs are present.
We experimentally validate our proposal for the variational quantum eigensolver and showcase that our algorithm is able to find solutions that have been previously proposed in the literature for the Hamiltonians; but also to outperform the state of the
arXiv Detail & Related papers (2024-07-29T15:22:39Z) - Strategic Data Re-Uploads: A Pathway to Improved Quantum Classification Data Re-Uploading Strategies for Improved Quantum Classifier Performance [0.0]
Re-uploading classical information into quantum states multiple times can enhance the accuracy of quantum classifiers.
We demonstrate our approach to two classification patterns: a linear classification pattern (LCP) and a non-linear classification pattern (NLCP)
arXiv Detail & Related papers (2024-05-15T14:28:00Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS)
QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs)
arXiv Detail & Related papers (2024-01-21T19:53:17Z) - Quantum Data Encoding: A Comparative Analysis of Classical-to-Quantum
Mapping Techniques and Their Impact on Machine Learning Accuracy [0.0]
This research explores the integration of quantum data embedding techniques into classical machine learning (ML) algorithms.
Our findings reveal that quantum data embedding contributes to improved classification accuracy and F1 scores.
arXiv Detail & Related papers (2023-11-17T08:00:08Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Quantum Machine Learning with SQUID [64.53556573827525]
We present the Scaled QUantum IDentifier (SQUID), an open-source framework for exploring hybrid Quantum-Classical algorithms for classification problems.
We provide examples of using SQUID in a standard binary classification problem from the popular MNIST dataset.
arXiv Detail & Related papers (2021-04-30T21:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.