Mirror-symmetry-protected dynamical quantum phase transitions in
topological crystalline insulators
- URL: http://arxiv.org/abs/2105.12768v3
- Date: Sat, 23 Oct 2021 08:59:57 GMT
- Title: Mirror-symmetry-protected dynamical quantum phase transitions in
topological crystalline insulators
- Authors: Ryo Okugawa, Hiroki Oshiyama, Masayuki Ohzeki
- Abstract summary: We show that mirror symmetry creates symmetry-protected DQPTs in quantum quenches.
We also show that symmetry-protected DQPTs occur in quenches in two-dimensional chiral-symmetric systems with mirror symmetry.
We demonstrate DQPTs using lattice models for a time-reversal invariant topological crystalline insulator and a higher-order topological insulator.
- Score: 0.966840768820136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical quantum phase transitions (DQPTs) are topologically characterized
in quantum quench dynamics in topological systems. In this paper, we study
Loschmidt amplitudes and DQPTs in quantum quenches in mirror-symmetric
topological phases. Based on the topological classification of mirror-symmetric
insulators, we show that mirror symmetry creates symmetry-protected DQPTs. If
mirror symmetry is present, topologically robust DQPTs can occur in quantum
quenches, even in high-dimensional time-reversal invariant systems. Then, we
also show that symmetry-protected DQPTs occur in quenches in two-dimensional
chiral-symmetric systems with mirror symmetry. Mirror-symmetry-protected DQPTs
can be easily captured by a reduced rate function. Moreover, we introduce
dynamical topological order parameters for mirror-symmetry-protected DQPTs.
Finally, we demonstrate DQPTs using lattice models for a time-reversal
invariant topological crystalline insulator and a higher-order topological
insulator.
Related papers
- Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)
Our invariant is invariant under unitary and similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Boundary anomaly detection in two-dimensional subsystem symmetry-protected topological phases [20.518529676631122]
We develop a method to detect quantum anomalies in systems with subsystem symmetry.
Using numerical simulations, we demonstrate the power of this method by identifying strong and weak $Ztautimes Zsigma$ SSPT phases.
We extend the anomaly indicator to mixed-state density matrices and show that quantum anomalies of subsystem symmetry can persist under both uniform and alternating disorders.
arXiv Detail & Related papers (2024-12-10T14:53:54Z) - Noninvertible Symmetry-Enriched Quantum Critical Point [2.5230254656019993]
We study critical lattice models with the noninvertible Rep($D_8$) symmetry in one dimension.
This leads us to a new class of quantum critical points (QCP), noninvertible symmetry-enriched QCPs.
arXiv Detail & Related papers (2024-11-28T10:29:24Z) - Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Holographic View of Mixed-State Symmetry-Protected Topological Phases in Open Quantum Systems [4.416740212467273]
We establish a holographic duality between d-dimensional mixed-state symmetry-protected topological phases (mSPTs) and (d+1)-dimensional subsystem symmetry-protected topological states (SSPTs)
Specifically, we show that the reduced density matrix of the boundary layer of a (d+1)-dimensional SSPT with subsystem symmetry $mathcalS$ corresponds to a d-dimensional mSPT with strong $mathcalS$ and weak $mathcalG$ symmetries.
arXiv Detail & Related papers (2024-10-10T17:59:42Z) - Study of quantum phase transition and entanglement in coupled top systems with standard and nonstandard symmetries under Floquet formalism [15.699822139827916]
We study an effective time-independent Hamiltonian of a coupled kicked-top (CKT) system derived using the Van Vleck-based perturbation theory at the high-frequency driving limit under Floquet formalism.
We study classical and quantum versions of this coupled top system for torsion-free and nonzero torsion cases.
arXiv Detail & Related papers (2024-09-13T06:36:41Z) - Acoustic higher-order topological insulator from momentum-space nonsymmorphic symmetries [18.632378628061844]
Momentum-space nonsymmorphic symmetries can modify the manifold of the Brillouin zone and lead to a variety of topological phenomena.
We present an acoustic realization of higher-order topological insulators protected by a pair of momentum-space glide reflections.
arXiv Detail & Related papers (2024-09-12T16:35:42Z) - Higher-order topology protected by latent crystalline symmetries [0.0]
It is sufficient to have a latent rotation symmetry, which may be revealed upon performing an isospectral reduction on the system.
This work extends the classification of topological crystalline insulators to include latent symmetries.
arXiv Detail & Related papers (2024-05-04T16:21:24Z) - Higher-Order Cellular Automata Generated Symmetry-Protected Topological Phases and Detection Through Multi-Point Strange Correlators [21.052345471463802]
We introduce HOCA to quantum many-body physics and construct a series of symmetry-protected topological (SPT) phases of matter.
We show that HOCA can generate not only well-understood SPTs with symmetries supported on either regular (e.g., line-like subsystems in the 2D cluster model) or fractal subsystems, but also a large class of unexplored SPTs with symmetries supported on more choices of subsystems.
arXiv Detail & Related papers (2023-12-31T13:56:20Z) - Topological quantum chains protected by dipolar and other modulated
symmetries [0.0]
We investigate the physics of one-dimensional symmetry protected topological (SPT) phases protected by symmetries whose symmetry generators exhibit spatial modulation.
We present a simple recipe for constructing modulated SPT models by generalizing the concept of decorated domain walls to spatially modulated symmetry defects.
arXiv Detail & Related papers (2023-09-18T18:00:04Z) - Entanglement entropy distinguishes PT-symmetry and topological phases in
a class of non-unitary quantum walks [0.0]
We calculate the hybrid entanglement entropy between coin and walker degrees of freedom in a non-unitary quantum walk.
An analysis at long times reveals that the quantum walk can indefinitely sustain hybrid entanglement in the unbroken symmetry phase even when gain and loss mechanisms are present.
arXiv Detail & Related papers (2022-12-14T19:01:15Z) - Fast electrons interacting with chiral matter: mirror symmetry breaking
of quantum decoherence and lateral momentum transfer [91.3755431537592]
We show that matter chirality breaks mirror symmetry of scattered electrons quantum decoherence.
We also prove that mirror asymmetry also shows up in the distribution of the electron lateral momentum.
arXiv Detail & Related papers (2022-04-07T15:06:27Z) - One-dimensional symmetric phases protected by frieze symmetries [0.0]
We make a systematic study of symmetry-protected topological gapped phases of quantum spin chains in the presence of the frieze space groups in one dimension using matrix product states.
We identify seventeen distinct non-trivial phases, define canonical forms, and compare the topological indices obtained from the MPS analysis with the group cohomological predictions.
arXiv Detail & Related papers (2022-02-25T18:41:26Z) - SYK meets non-Hermiticity II: measurement-induced phase transition [16.533265279392772]
We analytically derive the effective action in the large-$N$ limit and show that an entanglement transition is caused by the symmetry breaking in the enlarged replica space.
We also verify the large-$N$ critical exponents by numerically solving the Schwinger-Dyson equation.
arXiv Detail & Related papers (2021-04-16T17:55:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.