論文の概要: A Computational Model of the Institutional Analysis and Development
Framework
- arxiv url: http://arxiv.org/abs/2105.13151v1
- Date: Thu, 27 May 2021 13:53:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-28 16:11:06.919859
- Title: A Computational Model of the Institutional Analysis and Development
Framework
- Title(参考訳): 制度分析・開発枠組みの計算モデル
- Authors: Nieves Montes
- Abstract要約: この研究は、IADフレームワークを計算モデルに変える最初の試みである。
IADフレームワークのコンポーネントに合わせて構文を調整し、社会的相互作用の記述に使用するアクション状況言語(ASL)を定義します。
これらのモデルはゲーム理論の標準的なツールを用いて分析し、どの結果が最もインセンティブ付けされているかを予測し、社会的に関係のある性質に基づいて評価することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Institutional Analysis and Development (IAD) framework is a conceptual
toolbox put forward by Elinor Ostrom and colleagues in an effort to identify
and delineate the universal common variables that structure the immense variety
of human interactions. The framework identifies rules as one of the core
concepts to determine the structure of interactions, and acknowledges their
potential to steer a community towards more beneficial and socially desirable
outcomes. This work presents the first attempt to turn the IAD framework into a
computational model to allow communities of agents to formally perform what-if
analysis on a given rule configuration. To do so, we define the Action
Situation Language -- or ASL -- whose syntax is hgighly tailored to the
components of the IAD framework and that we use to write descriptions of social
interactions. ASL is complemented by a game engine that generates its semantics
as an extensive-form game. These models, then, can be analyzed with the
standard tools of game theory to predict which outcomes are being most
incentivized, and evaluated according to their socially relevant properties.
- Abstract(参考訳): Institutional Analysis and Development (IAD) フレームワークは、エリナー・オストロムらによって提唱された概念的ツールボックスであり、多種多様な人間の相互作用を構成する普遍的な共通変数を識別し、記述することを目的としている。
このフレームワークは、ルールをインタラクションの構造を決定するコアコンセプトの1つとして定義し、コミュニティをより有益で社会的に望ましい結果へと導く可能性を認識している。
この研究は、IADフレームワークを計算モデルに転換し、エージェントのコミュニティが与えられたルール構成に対してWhat-if分析を正式に実行できるようにする最初の試みである。
そのために私たちは、iadフレームワークのコンポーネントに厳格にカスタマイズされた構文を持つアクション状況言語 -- あるいはasl -- を定義し、社会的インタラクションの記述を書くために使用します。
ASLはゲームエンジンによって補完され、そのセマンティクスを広義のゲームとして生成する。
これらのモデルはゲーム理論の標準的なツールを用いて分析し、どの結果が最もインセンティブ付けされているかを予測し、社会的に関係のある性質に基づいて評価することができる。
関連論文リスト
- Investigating the Zone of Proximal Development of Language Models for In-Context Learning [59.91708683601029]
大規模言語モデル(LLM)の文脈内学習(ICL)の振る舞いを分析するための学習分析フレームワークを提案する。
我々は,各例のモデル性能に基づいて,LLMのZPDを測定することにより,ZPD理論をICLに適用する。
本研究はICLの複雑な多面的動作を明らかにし,この手法の理解と活用に関する新たな知見を提供する。
論文 参考訳(メタデータ) (2025-02-10T19:36:21Z) - Enhanced Classroom Dialogue Sequences Analysis with a Hybrid AI Agent: Merging Expert Rule-Base with Large Language Models [7.439914834067705]
本研究では,対話シーケンスの包括的ルールベースと人工知能(AI)エージェントを開発する。
このエージェントは、自然言語の複雑さに適応しながら専門家の知識を適用し、教室の対話シーケンスの正確かつ柔軟な分類を可能にする。
論文 参考訳(メタデータ) (2024-11-13T08:13:41Z) - Advancing Interactive Explainable AI via Belief Change Theory [5.842480645870251]
この種の形式化は、対話的な説明を開発するためのフレームワークと方法論を提供する、と我々は主張する。
まず,人間と機械の間で共有される説明情報を表現するために,論理に基づく新しい形式を定義した。
次に、対話型XAIの現実シナリオについて検討し、新しい知識と既存の知識の優先順位が異なり、フォーマリズムがインスタンス化される可能性がある。
論文 参考訳(メタデータ) (2024-08-13T13:11:56Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
ラベル名監視型トピックモデリングのためのアプローチとして,EdTMを提案する。
EdTMは、LM/LLMベースのドキュメントトピック親和性を活用しながら、代入問題としてのトピックモデリングをモデル化する。
論文 参考訳(メタデータ) (2024-06-28T13:57:27Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
このアプローチは抽象弁証法フレームワークのコンピュータ支援分析を可能にする。
応用例としては、メタ理論的性質の形式的解析と検証がある。
論文 参考訳(メタデータ) (2023-12-08T09:32:26Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
本稿では,人工知能(AGI)モデルとその前駆体の性能と動作を分類する枠組みを提案する。
このフレームワークは、AGIのパフォーマンス、一般性、自律性のレベルを導入し、モデルを比較し、リスクを評価し、AGIへの道筋に沿って進捗を測定する共通の言語を提供する。
論文 参考訳(メタデータ) (2023-11-04T17:44:58Z) - Dialectical Reconciliation via Structured Argumentative Dialogues [14.584998154271512]
我々のフレームワークは,説明者(AIエージェント)と説明者(ヒューマンユーザ)の知識の相違に対処するための弁証的調和を可能にする。
我々のフレームワークは、説明可能性の重要性が重要である領域において、効果的な人間とAIの相互作用を促進するための有望な方向を提供することを示唆している。
論文 参考訳(メタデータ) (2023-06-26T13:39:36Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - Models we Can Trust: Toward a Systematic Discipline of (Agent-Based)
Model Interpretation and Validation [0.0]
我々は、モデルから情報を取り出すための相互作用の分野の開発を提唱する。
このような分野の発展に向けたいくつかの方向性を概説する。
論文 参考訳(メタデータ) (2021-02-23T10:52:22Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
我々はraddleベンチマーク、コーパスのコレクション、および様々なドメインのモデルのパフォーマンスを評価するためのツールを紹介します。
RADDLEは強力な一般化能力を持つモデルを好んで奨励するように設計されている。
先行学習と微調整に基づく最近の最先端システムの評価を行い,異種ダイアログコーパスに基づく基礎的な事前学習が,ドメインごとの個別モデルをトレーニングするよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-29T08:58:49Z) - Exploring Probabilistic Soft Logic as a framework for integrating
top-down and bottom-up processing of language in a task context [0.6091702876917279]
このアーキテクチャは既存のNLPコンポーネントを統合し、8段階の言語モデリングの候補分析を生成する。
このアーキテクチャは、形式レベルでの表現形式としてUniversal Dependencies (UD) と、学習者回答のセマンティックな分析を表現するための抽象的意味表現 (AMR) に基づいて構築されている。
論文 参考訳(メタデータ) (2020-04-15T11:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。