論文の概要: Dialectical Reconciliation via Structured Argumentative Dialogues
- arxiv url: http://arxiv.org/abs/2306.14694v3
- Date: Thu, 8 Aug 2024 16:22:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 21:19:13.074590
- Title: Dialectical Reconciliation via Structured Argumentative Dialogues
- Title(参考訳): 構造的調音対話による弁証的調合
- Authors: Stylianos Loukas Vasileiou, Ashwin Kumar, William Yeoh, Tran Cao Son, Francesca Toni,
- Abstract要約: 我々のフレームワークは,説明者(AIエージェント)と説明者(ヒューマンユーザ)の知識の相違に対処するための弁証的調和を可能にする。
我々のフレームワークは、説明可能性の重要性が重要である領域において、効果的な人間とAIの相互作用を促進するための有望な方向を提供することを示唆している。
- 参考スコア(独自算出の注目度): 14.584998154271512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel framework designed to extend model reconciliation approaches, commonly used in human-aware planning, for enhanced human-AI interaction. By adopting a structured argumentation-based dialogue paradigm, our framework enables dialectical reconciliation to address knowledge discrepancies between an explainer (AI agent) and an explainee (human user), where the goal is for the explainee to understand the explainer's decision. We formally describe the operational semantics of our proposed framework, providing theoretical guarantees. We then evaluate the framework's efficacy ``in the wild'' via computational and human-subject experiments. Our findings suggest that our framework offers a promising direction for fostering effective human-AI interactions in domains where explainability is important.
- Abstract(参考訳): 本稿では,人間とAIの相互作用を高めるために,人間と認識する計画において一般的に使用されるモデル和解アプローチの拡張を目的とした新しいフレームワークを提案する。
構造化された議論に基づく対話パラダイムを採用することにより,説明者(AIエージェント)と説明者(ヒューマンユーザ)の知識の相違に対処する弁証的調和を可能にする。
提案するフレームワークの動作意味を正式に記述し,理論的保証を提供する。
次に,そのフレームワークの有効性を,計算実験と人体実験により評価する。
我々のフレームワークは、説明可能性の重要性が重要である領域において、効果的な人間とAIの相互作用を促進するための有望な方向を提供することを示唆している。
関連論文リスト
- Human-Robot Dialogue Annotation for Multi-Modal Common Ground [4.665414514091581]
本稿では,人間とロボットの対話データにアノテートした記号表現の開発について述べる。
遠隔対話では,人間とロボットが不慣れな環境における共同ナビゲーションと探索作業に従事しているが,ロボットは限られた通信制約のため,すぐには高品質な視覚情報を共有できない。
このパラダイム内では、抽象的意味表現の強化である対話-AMRアノテーションを通じて、対話中の1つの発話の命題意味と補間力を取り込む。
論文 参考訳(メタデータ) (2024-11-19T19:33:54Z) - Advancing Interactive Explainable AI via Belief Change Theory [5.842480645870251]
この種の形式化は、対話的な説明を開発するためのフレームワークと方法論を提供する、と我々は主張する。
まず,人間と機械の間で共有される説明情報を表現するために,論理に基づく新しい形式を定義した。
次に、対話型XAIの現実シナリオについて検討し、新しい知識と既存の知識の優先順位が異なり、フォーマリズムがインスタンス化される可能性がある。
論文 参考訳(メタデータ) (2024-08-13T13:11:56Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
Inductive Logic Programmingアプローチを用いて、抽象的および構造化された議論フレームワークのアクセシビリティセマンティクスを解釈可能な方法で学習する新しいフレームワークを提案する。
提案手法は既存の議論解法よりも優れており,フォーマルな議論や人間と機械の対話の領域において,新たな研究の方向性が開けることになる。
論文 参考訳(メタデータ) (2023-10-18T20:18:05Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - Speaker-Oriented Latent Structures for Dialogue-Based Relation
Extraction [10.381257436462116]
そこで我々は,話者指向の潜在構造を明瞭に誘導し,DiaREを改善する新しいモデルSOLSを提案する。
具体的には,発話境界を超えたトークン間の関係を捉えるために,潜在構造を学習する。
学習過程において、話者固有の正規化手法は、話者に関連するキーキーを徐々に強調し、無関係なキーを消去する。
論文 参考訳(メタデータ) (2021-09-11T04:24:51Z) - A Computational Model of the Institutional Analysis and Development
Framework [0.0]
この研究は、IADフレームワークを計算モデルに変える最初の試みである。
IADフレームワークのコンポーネントに合わせて構文を調整し、社会的相互作用の記述に使用するアクション状況言語(ASL)を定義します。
これらのモデルはゲーム理論の標準的なツールを用いて分析し、どの結果が最もインセンティブ付けされているかを予測し、社会的に関係のある性質に基づいて評価することができる。
論文 参考訳(メタデータ) (2021-05-27T13:53:56Z) - I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling [104.09033240889106]
DialoguE Contradiction Detection Task(DECODE)と、人間とロボットの矛盾した対話の両方を含む新しい会話データセットを紹介します。
次に、事前学習したトランスフォーマーモデルを用いて、定型的非構造的アプローチと矛盾検出を行う構造的発話に基づくアプローチを比較する。
論文 参考訳(メタデータ) (2020-12-24T18:47:49Z) - Discourse Coherence, Reference Grounding and Goal Oriented Dialogue [15.766916122461922]
我々は、混合開始型人間-コンピュータの参照通信を実現するための新しいアプローチについて論じる。
本稿では,談話間の制約を蓄積し,学習確率モデルを用いて解釈する参照通信領域における単純な対話システムについて述べる。
論文 参考訳(メタデータ) (2020-07-08T20:53:14Z) - Is this Dialogue Coherent? Learning from Dialogue Acts and Entities [82.44143808977209]
スイッチボード・コヒーレンス・コーパス(SWBD-Coh)コーパス(Switchboard Coherence corpus,SWBD-Coh)を作成する。
コーパスの統計的分析は、ターンコヒーレンス知覚がエンティティの分布パターンによってどのように影響を受けるかを示している。
DA情報とエンティティ情報を組み合わせたモデルでは,応答選択とターンコヒーレンス評価の両面で最高の性能が得られることがわかった。
論文 参考訳(メタデータ) (2020-06-17T21:02:40Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。