Model Selection for Production System via Automated Online Experiments
- URL: http://arxiv.org/abs/2105.13420v1
- Date: Thu, 27 May 2021 19:48:23 GMT
- Title: Model Selection for Production System via Automated Online Experiments
- Authors: Zhenwen Dai, Praveen Chandar, Ghazal Fazelnia, Ben Carterette, Mounia
Lalmas-Roelleke
- Abstract summary: A challenge that machine learning practitioners in the industry face is the task of selecting the best model to deploy in production.
Online controlled experiments such as A/B tests yield the most reliable estimation of the effectiveness of the whole system, but can only compare two or a few models due to budget constraints.
We propose an automated online experimentation mechanism that can efficiently perform model selection from a large pool of models.
- Score: 16.62275716351037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A challenge that machine learning practitioners in the industry face is the
task of selecting the best model to deploy in production. As a model is often
an intermediate component of a production system, online controlled experiments
such as A/B tests yield the most reliable estimation of the effectiveness of
the whole system, but can only compare two or a few models due to budget
constraints. We propose an automated online experimentation mechanism that can
efficiently perform model selection from a large pool of models with a small
number of online experiments. We derive the probability distribution of the
metric of interest that contains the model uncertainty from our Bayesian
surrogate model trained using historical logs. Our method efficiently
identifies the best model by sequentially selecting and deploying a list of
models from the candidate set that balance exploration-exploitation. Using
simulations based on real data, we demonstrate the effectiveness of our method
on two different tasks.
Related papers
- Active Learning of Model Discrepancy with Bayesian Experimental Design [0.0]
We propose an efficient approach to learn the model discrepancy based on the data from a sequential experimental design (BED)
We show that the proposed method is efficient and robust to the active learning of high-dimensional model discrepancy, using data suggested by the sequential BED.
We also demonstrate that the proposed method is compatible with both classical numerical solvers and modern auto-differentiable solvers.
arXiv Detail & Related papers (2025-02-07T22:54:20Z) - Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a new sandbox suite tailored for integrated data-model co-development.
This sandbox provides a feedback-driven experimental platform, enabling cost-effective and guided refinement of both data and models.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
We propose a two-phase (coarse-recall and fine-selection) model selection framework.
It aims to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets.
It has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods.
arXiv Detail & Related papers (2024-03-28T14:44:44Z) - Budgeted Online Model Selection and Fine-Tuning via Federated Learning [26.823435733330705]
Online model selection involves selecting a model from a set of candidate models 'on the fly' to perform prediction on a stream of data.
The choice of candidate models henceforth has a crucial impact on the performance.
The present paper proposes an online federated model selection framework where a group of learners (clients) interacts with a server with sufficient memory.
Using the proposed algorithm, clients and the server collaborate to fine-tune models to adapt them to a non-stationary environment.
arXiv Detail & Related papers (2024-01-19T04:02:49Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
We focus on improving the few-shot performance of prompt tuning by transferring knowledge from soft prompts of source tasks.
We propose Sample-specific Ensemble of Source Models (SESoM)
SESoM learns to adjust the contribution of each source model for each target sample separately when ensembling source model outputs.
arXiv Detail & Related papers (2022-10-23T01:33:16Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEE is a model-ensemble method that consists of optimistic exploration and weighted exploitation.
Our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
arXiv Detail & Related papers (2021-07-05T07:18:20Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.