Towards a NISQ Algorithm to Simulate Hermitian Matrix Exponentiation
- URL: http://arxiv.org/abs/2105.13610v1
- Date: Fri, 28 May 2021 06:37:12 GMT
- Title: Towards a NISQ Algorithm to Simulate Hermitian Matrix Exponentiation
- Authors: Keren Li
- Abstract summary: A practical fault-tolerant quantum computer is worth looking forward to as it provides applications that outperform their known classical counterparts.
It would take decades to make it happen, exploiting the power of noisy intermediate-scale quantum(NISQ) devices, which already exist, is becoming one of current goals.
In this article, a method is reported as simulating a hermitian matrix exponentiation using parametrized quantum circuit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A practical fault-tolerant quantum computer is worth looking forward to as it
provides applications that outperform their known classical counterparts.
However, millions of interacting qubits with stringent criteria are required,
which is intractable with current quantum technologies. As it would take
decades to make it happen, exploiting the power of noisy intermediate-scale
quantum(NISQ) devices, which already exist, is becoming one of current goals.
Matrix exponentiation, especially hermitian matrix exponentiation, is an
essential element for quantum information processing. In this article, a
heuristic method is reported as simulating a hermitian matrix exponentiation
using parametrized quantum circuit(PQC). To generate PQCs for simulations, two
strategies, each with its own advantages, are proposed, and can be deployed on
near future quantum devices. Compared with the method such as product formula
and density matrix exponentiation, the PQCs provided in our method require only
low depth circuit and easily accessible gates, which benefit experimental
realizations. Furthermore, in this paper, an ancilla-assisted parameterized
quantum circuit is proposed to characterize and compress a unitary process,
which is likely to be applicable to realizing applications on NISQ hardwares,
such as phase estimation, principal component analyses, and matrix inversion.
To support the feasibility of our method, numerical experiments were
investigated via simulating evolutions by Bell state, GHZ state and Hamiltonian
of Crotonic acid, which show an experimental friendly result when compared with
their conventional methods. As pursuing a fault-tolerant quantum computer is
still challenging and takes decades, our work, which gives a NISQ device
friendly way, contributes to the field of NISQ algorithms and provides a
possibility, exploiting the power with current quantum technology.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
Quantum computing provides a promising avenue toward enabling quantum chemistry calculations.
Recent research efforts are dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2024-08-20T18:00:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Dequantizing the Quantum Singular Value Transformation: Hardness and
Applications to Quantum Chemistry and the Quantum PCP Conjecture [0.0]
We show that the Quantum Singular Value Transformation can be efficiently "dequantized"
We show that with inverse-polynomial precision, the same problem becomes BQP-complete.
We also discuss how this dequantization technique may help make progress on the central quantum PCP.
arXiv Detail & Related papers (2021-11-17T12:50:13Z) - Estimating Phosphorescent Emission Energies in Ir(III) Complexes using
Large-Scale Quantum Computing Simulations [0.0]
We apply the iterative qubit coupled cluster (iQCC) method on classical hardware to the calculation of the transition energies in nine phosphorescent iridium complexes.
Our simulations would require a gate-based quantum computer with a minimum of 72 fully-connected and error-corrected logical qubits.
The iQCC quantum method is found to match the accuracy of the fine-tuned DFT functionals, has a better Pearson correlation coefficient, and still has considerable potential for systematic improvement.
arXiv Detail & Related papers (2021-11-07T20:02:10Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.