Estimating Phosphorescent Emission Energies in Ir(III) Complexes using
Large-Scale Quantum Computing Simulations
- URL: http://arxiv.org/abs/2111.04169v2
- Date: Sun, 14 Nov 2021 21:38:16 GMT
- Title: Estimating Phosphorescent Emission Energies in Ir(III) Complexes using
Large-Scale Quantum Computing Simulations
- Authors: Scott N. Genin, Ilya G. Ryabinkin, Nathan R. Paisley, Sarah O. Whelan,
Michael G. Helander, and Zachary M. Hudson
- Abstract summary: We apply the iterative qubit coupled cluster (iQCC) method on classical hardware to the calculation of the transition energies in nine phosphorescent iridium complexes.
Our simulations would require a gate-based quantum computer with a minimum of 72 fully-connected and error-corrected logical qubits.
The iQCC quantum method is found to match the accuracy of the fine-tuned DFT functionals, has a better Pearson correlation coefficient, and still has considerable potential for systematic improvement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum chemistry simulations that accurately predict the properties of
materials are among the most highly anticipated applications of quantum
computing. It is widely believed that simulations running on quantum computers
will allow for higher accuracy, but there has not yet been a convincing
demonstration that quantum methods are competitive with existing classical
methods at scale. Here we apply the iterative qubit coupled cluster (iQCC)
method on classical hardware to the calculation of the $T_1 \to S_0$ transition
energies in nine phosphorescent iridium complexes, to determine if quantum
simulations have any advantage over traditional computing methods.
Phosphorescent iridium complexes are integral to the widespread
commercialization of organic light-emitting diode (OLED) technology, yet
accurate computational prediction of their emission energies remains a
challenge. Our simulations would require a gate-based quantum computer with a
minimum of 72 fully-connected and error-corrected logical qubits. Since such
devices do not yet exist, we demonstrate the iQCC quantum method using a
special purpose quantum simulator on classical hardware. The results are
compared to a selection of common density-functional theory (DFT) functionals
(B3LYP, CAM-B3LYP, LC-wHPBE), ab initio methods (HF and MP2), and experimental
data. The iQCC quantum method is found to match the accuracy of the fine-tuned
DFT functionals, has a better Pearson correlation coefficient, and still has
considerable potential for systematic improvement. Based on these results, we
anticipate that the iQCC quantum method will have the required accuracy to
design organometallic complexes when deployed on emerging quantum hardware.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
Quantum computing provides a promising avenue toward enabling quantum chemistry calculations.
Recent research efforts are dedicated to developing and scaling algorithms for Noisy Intermediate-Scale Quantum (NISQ) devices.
arXiv Detail & Related papers (2024-08-20T18:00:01Z) - Quantum Embedding Method for the Simulation of Strongly Correlated
Systems on Quantum Computers [0.0]
We introduce the projection-based embedding method for combining the variational quantum eigensolver (VQE) algorithm with density functional theory (DFT)
The developed VQE-in-DFT method is then implemented efficiently on a real quantum device and employed for simulating the triple bond breaking process in butyronitrile.
The developments will benefit many different chemical areas including the computer aided drug design as well as the study of metalloenzymes with a strongly correlated fragment.
arXiv Detail & Related papers (2023-02-06T19:00:03Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Exploring the scaling limitations of the variational quantum eigensolver
with the bond dissociation of hydride diatomic molecules [0.0]
Materials simulations involving strongly correlated electrons pose fundamental challenges to state-of-the-art electronic structure methods.
No quantum computer has simulated a molecule of a size and complexity relevant to real-world applications, despite the fact that the variational quantum eigensolver algorithm can predict chemically accurate total energies.
We show that the inclusion of d-orbitals and the use of the UCCSD ansatz, which are both necessary to capture the correct TiH physics, dramatically increase the cost of this problem.
arXiv Detail & Related papers (2022-08-15T19:21:17Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Towards a NISQ Algorithm to Simulate Hermitian Matrix Exponentiation [0.0]
A practical fault-tolerant quantum computer is worth looking forward to as it provides applications that outperform their known classical counterparts.
It would take decades to make it happen, exploiting the power of noisy intermediate-scale quantum(NISQ) devices, which already exist, is becoming one of current goals.
In this article, a method is reported as simulating a hermitian matrix exponentiation using parametrized quantum circuit.
arXiv Detail & Related papers (2021-05-28T06:37:12Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.