論文の概要: An Explanatory Query-Based Framework for Exploring Academic Expertise
- arxiv url: http://arxiv.org/abs/2105.13728v1
- Date: Fri, 28 May 2021 10:48:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 13:39:08.422586
- Title: An Explanatory Query-Based Framework for Exploring Academic Expertise
- Title(参考訳): アカデミックエキスパートの探索のための説明的クエリベースのフレームワーク
- Authors: Oana Cocarascu, Andrew McLean Paul French, Francesca Toni
- Abstract要約: 機関内の潜在的な協力者を見つけることは、偏見を伴う手動検索作業に時間を要する。
本研究では,研究専門知識の検索,評価,探索を行う新しいクエリベースのフレームワークを提案する。
提案手法は, 望ましい特性を満足し, 効率的であると同時に, 一致の同定に有効であることを示す。
- 参考スコア(独自算出の注目度): 12.235907063179278
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The success of research institutions heavily relies upon identifying the
right researchers "for the job": researchers may need to identify appropriate
collaborators, often from across disciplines; students may need to identify
suitable supervisors for projects of their interest; administrators may need to
match funding opportunities with relevant researchers, and so on. Usually,
finding potential collaborators in institutions is a time-consuming manual
search task prone to bias. In this paper, we propose a novel query-based
framework for searching, scoring, and exploring research expertise
automatically, based upon processing abstracts of academic publications. Given
user queries in natural language, our framework finds researchers with relevant
expertise, making use of domain-specific knowledge bases and word embeddings.
It also generates explanations for its recommendations. We evaluate our
framework with an institutional repository of papers from a leading university,
using, as baselines, artificial neural networks and transformer-based models
for a multilabel classification task to identify authors of publication
abstracts. We also assess the cross-domain effectiveness of our framework with
a (separate) research funding repository for the same institution. We show that
our simple method is effective in identifying matches, while satisfying
desirable properties and being efficient.
- Abstract(参考訳): 研究機関の成功は「仕事のために」適切な研究者を特定することに大きく依存している:研究者は様々な分野から適切な協力者を特定する必要がある;学生は興味のあるプロジェクトに適した監督者を特定する必要がある;管理者は関連する研究者と資金の機会を一致させる必要がある、など。
通常、機関内の潜在的な協力者を見つけることは、偏見を伴う手動検索作業に時間がかかる。
本稿では,学術論文の抽象的な処理に基づいて,研究専門知識の検索,評価,探索を行う新しいクエリベースのフレームワークを提案する。
自然言語のユーザクエリを考慮し、ドメイン固有の知識ベースと単語の埋め込みを利用して、関連する専門知識を持つ研究者を見つける。
また、レコメンデーションに関する説明も生成する。
我々は,先進大学における論文の機関リポジトリを用いて,多ラベル分類タスクのためのベースライン,人工ニューラルネットワーク,トランスフォーマーベースモデルを用いて,論文の著者を特定する。
また,同機関の(別個の)研究資金レポジトリを用いて,フレームワークのクロスドメイン効果を評価する。
提案手法は, 望ましい特性を満足し, 効率的でありながら, マッチングの同定に有効であることを示す。
関連論文リスト
- Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
科学文献の急激な増加は、研究者が最近の進歩と意義ある研究方向を見極めるのを困難にしている。
大規模言語モデル(LLM)の最近の発展は、新しい研究のアイデアを自動生成するための有望な道のりを示唆している。
本研究では, チェーン構造に関連文献を整理し, 研究領域の進展を効果的に反映する, LLMベースのエージェントであるChain-of-Ideas(CoI)エージェントを提案する。
論文 参考訳(メタデータ) (2024-10-17T03:26:37Z) - Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature [48.572336666741194]
本稿では,探索探索能力の向上を目的とした知識ナビゲータを提案する。
検索された文書を、名前と記述の科学トピックとサブトピックの、ナビゲート可能な2段階の階層に整理する。
論文 参考訳(メタデータ) (2024-08-28T14:48:37Z) - ResearchArena: Benchmarking LLMs' Ability to Collect and Organize Information as Research Agents [21.17856299966841]
大規模言語モデル (LLM) は自然言語処理において様々なタスクで顕著な性能を示した。
我々はLLMエージェントが学術調査を行う能力を測定するベンチマーク「ResearchArena」を開発した。
論文 参考訳(メタデータ) (2024-06-13T03:26:30Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、大規模言語モデルによる研究アイデア作成エージェントである。
科学文献に基づいて繰り返し精製しながら、問題、方法、実験設計を生成する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
我々は,1つの大言語モデル(LLM)で検索タスクを統一することにより,従来の検索スタックを再定義する,大規模検索モデルと呼ばれる新しい概念的フレームワークを導入する。
全てのタスクは自動回帰テキスト生成問題として定式化され、自然言語のプロンプトを使ってタスクをカスタマイズできる。
提案フレームワークは,LLMの強力な言語理解と推論能力を活用し,既存の検索スタックを簡素化しつつ,検索結果の質を向上させる能力を提供する。
論文 参考訳(メタデータ) (2023-10-23T05:52:09Z) - Promoting Research Collaboration with Open Data Driven Team
Recommendation in Response to Call for Proposals [10.732914229005903]
さまざまなAI手法を用いてチームを推薦する新しいシステムについて述べる。
短期と長期の目標のバランスをとるメトリクスに沿って、良さを最大化するためにチームを作ります。
論文 参考訳(メタデータ) (2023-09-18T00:04:08Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Artificial Intelligence for Scientific Research: Authentic Research Education Framework [6.772344064510275]
我々は,補完的な技術を持つ学生チームが,自然科学研究者のために有用な人工知能(AI)ソリューションを開発するプログラムを実装した。
当社のアプローチは、特定のニーズに対して機械学習の有用性を評価する機会を得る科学者に直接利益をもたらす。
論文 参考訳(メタデータ) (2022-09-19T16:50:05Z) - Effective Distributed Representations for Academic Expert Search [1.9815631757151737]
学術論文の異なる分散表現(埋め込み)が学術専門家の検索にどのように影響するかを考察する。
特に,文脈的埋め込みが検索性能に与える影響について検討する。
文類似性タスクのために訓練されたトランスフォーマーモデルによって生成された文脈埋め込みを用いることで、最も効果的な論文表現が得られることを観察する。
論文 参考訳(メタデータ) (2020-10-16T09:43:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。