論文の概要: The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2105.13794v1
- Date: Fri, 28 May 2021 12:59:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 13:36:22.100947
- Title: The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks
- Title(参考訳): 知的学習システム:畳み込みニューラルネットワークを用いた講義中の生徒のエンゲージメントの検出
- Authors: Richard Klein and Turgay Celik
- Abstract要約: Wits Intelligent Teaching System (WITS) は、学生の感情に関するリアルタイムフィードバックを講師に支援することを目的としている。
AlexNetベースのCNNはトレーニングが成功し、Support Vector Machineアプローチを大きく上回っている。
- 参考スコア(独自算出の注目度): 0.30458514384586394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To perform contingent teaching and be responsive to students' needs during
class, lecturers must be able to quickly assess the state of their audience.
While effective teachers are able to gauge easily the affective state of the
students, as class sizes grow this becomes increasingly difficult and less
precise. The Wits Intelligent Teaching System (WITS) aims to assist lecturers
with real-time feedback regarding student affect. The focus is primarily on
recognising engagement or lack thereof. Student engagement is labelled based on
behaviour and postures that are common to classroom settings. These proxies are
then used in an observational checklist to construct a dataset of engagement
upon which a CNN based on AlexNet is successfully trained and which
significantly outperforms a Support Vector Machine approach. The deep learning
approach provides satisfactory results on a challenging, real-world dataset
with significant occlusion, lighting and resolution constraints.
- Abstract(参考訳): 授業中,生徒のニーズに反応し,即興指導を行うためには,講師が聴衆の状態を迅速に評価できる必要がある。
効果的な教師は生徒の感情状態を簡単に測定できるが、クラスのサイズが大きくなるにつれて、これはますます難しくなり、正確性が低下する。
Wits Intelligent Teaching System (WITS) は、学生の感情に関するリアルタイムフィードバックによる講師の支援を目的としている。
主に、関与や欠如を認識することに焦点を当てている。
生徒のエンゲージメントは、教室の設定に共通する行動と姿勢に基づいてラベル付けされる。
これらのプロキシは観測チェックリストで使用され、AlexNetに基づくCNNのトレーニングが成功し、Support Vector Machineアプローチを大幅に上回る、エンゲージメントのデータセットを構築する。
ディープラーニングアプローチは、大きなオクルージョン、照明、解像度の制約のある、挑戦的で現実的なデータセットに満足できる結果を提供する。
関連論文リスト
- Representational Alignment Supports Effective Machine Teaching [81.19197059407121]
我々は,機械教育の知見と実践的なコミュニケーションを,表現的アライメントに関する文献と統合する。
教師の精度から表現的アライメントを遠ざける教師付き学習環境を設計する。
論文 参考訳(メタデータ) (2024-06-06T17:48:24Z) - Revealing Networks: Understanding Effective Teacher Practices in
AI-Supported Classrooms using Transmodal Ordered Network Analysis [0.9187505256430948]
本研究は,AI教師と連携した数学教室において,システム内学習の伝統的な指標に関連する効果的な教員の実践を理解するために,トランスモーダル順序ネットワーク分析を用いた。
教師の実践を学生の学習率で比較すると,低学率の生徒はモニタリング後,より有意な使用感を示した。
学習率の低い生徒は、高学率の学生と同様の学習行動を示し、教師の正しい試みを繰り返した。
論文 参考訳(メタデータ) (2023-12-17T21:50:02Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
NERモデルの堅牢性を改善するために,自己学習型教員学生フレームワークを提案する。
本稿では,2つの教員ネットワークからなる適応型教員学習を提案する。
微粒な学生アンサンブルは、教師モデルの各フラグメントを、生徒の対応するフラグメントの時間移動平均で更新し、各モデルフラグメントのノイズに対する一貫した予測を強化する。
論文 参考訳(メタデータ) (2022-12-13T12:14:09Z) - A Machine Learning system to monitor student progress in educational
institutes [0.0]
本稿では、機械学習技術を用いて、クレジットスコアと呼ばれる分類器を生成するデータ駆動手法を提案する。
信用スコアを進捗指標として使うという提案は、学習管理システムで使うのに適している。
論文 参考訳(メタデータ) (2022-11-02T08:24:08Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
解釈可能な知識追跡(英: Interpretable Knowledge Tracing, IKT)は、3つの有意義な潜在機能に依存する単純なモデルである。
IKTの将来の学生成績予測は、Tree-Augmented Naive Bayes (TAN) を用いて行われる。
IKTは、現実世界の教育システムにおいて、因果推論を用いた適応的でパーソナライズされた指示を提供する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-12-15T19:05:48Z) - Towards Explainable Student Group Collaboration Assessment Models Using
Temporal Representations of Individual Student Roles [12.945344702592557]
学生グループコラボレーションを評価するために,簡単な時間-CNN深層学習モデルを提案する。
学生グループコラボレーション評価における動的に変化する特徴表現の適用性を検討する。
また、ディープラーニングモデルの決定に繋がった重要な時間指標をよりよく理解し、解釈するために、Grad-CAM視覚化を使用します。
論文 参考訳(メタデータ) (2021-06-17T16:00:08Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
本稿では,表情認識における認識精度を向上させるために,PASM(Point Adversarial Self Mining)を提案する。
PASMは、目標タスクに関連する最も情報性の高い位置を見つけるために、ポイント敵攻撃法と訓練された教師ネットワークを使用する。
適応学習教材の生成と教師/学生の更新を複数回行うことができ、ネットワーク能力が反復的に向上する。
論文 参考訳(メタデータ) (2020-08-26T06:39:24Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
本稿では,対話型オンライン質問プールにおいて,より優れた生徒のパフォーマンス予測を実現するために,グラフニューラルネットワーク(GNN)を用いた新しいアプローチを提案する。
具体的には,学生のインタラクションを用いた学生と質問の関係をモデル化し,学生のインタラクション・クエストネットワークを構築する。
1631の質問に対して4000人以上の学生の問題解決過程において生成した104,113個のマウス軌跡からなる実世界のデータセットに対するアプローチの有効性を評価した。
論文 参考訳(メタデータ) (2020-08-04T14:55:32Z) - Interactive Knowledge Distillation [79.12866404907506]
本稿では,効率的な知識蒸留のための対話型指導戦略を活用するために,対話型知識蒸留方式を提案する。
蒸留工程では,教師と学生のネットワーク間の相互作用を交換操作により行う。
教員ネットワークの典型的な設定による実験により,IAKDで訓練された学生ネットワークは,従来の知識蒸留法で訓練された学生ネットワークよりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-07-03T03:22:04Z) - Student-Teacher Curriculum Learning via Reinforcement Learning:
Predicting Hospital Inpatient Admission Location [4.359338565775979]
本研究では,この問題に対処するための強化学習を通して,学生と教師のネットワークを提案する。
生徒ネットワークの重みの表現を状態として扱い、教師ネットワークへの入力として供給する。
教師ネットワークの行動は、エントロピーに応じてソートされたトレーニングセットから、生徒ネットワークをトレーニングするための最も適切なデータのバッチを選択することである。
論文 参考訳(メタデータ) (2020-07-01T15:00:43Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。