論文の概要: Towards Explainable Student Group Collaboration Assessment Models Using
Temporal Representations of Individual Student Roles
- arxiv url: http://arxiv.org/abs/2106.09623v1
- Date: Thu, 17 Jun 2021 16:00:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 15:45:05.965042
- Title: Towards Explainable Student Group Collaboration Assessment Models Using
Temporal Representations of Individual Student Roles
- Title(参考訳): 学生の役割の時間表現を用いた学生集団協調評価モデルの構築
- Authors: Anirudh Som, Sujeong Kim, Bladimir Lopez-Prado, Svati Dhamija, Nonye
Alozie, Amir Tamrakar
- Abstract要約: 学生グループコラボレーションを評価するために,簡単な時間-CNN深層学習モデルを提案する。
学生グループコラボレーション評価における動的に変化する特徴表現の適用性を検討する。
また、ディープラーニングモデルの決定に繋がった重要な時間指標をよりよく理解し、解釈するために、Grad-CAM視覚化を使用します。
- 参考スコア(独自算出の注目度): 12.945344702592557
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Collaboration is identified as a required and necessary skill for students to
be successful in the fields of Science, Technology, Engineering and Mathematics
(STEM). However, due to growing student population and limited teaching staff
it is difficult for teachers to provide constructive feedback and instill
collaborative skills using instructional methods. Development of simple and
easily explainable machine-learning-based automated systems can help address
this problem. Improving upon our previous work, in this paper we propose using
simple temporal-CNN deep-learning models to assess student group collaboration
that take in temporal representations of individual student roles as input. We
check the applicability of dynamically changing feature representations for
student group collaboration assessment and how they impact the overall
performance. We also use Grad-CAM visualizations to better understand and
interpret the important temporal indices that led to the deep-learning model's
decision.
- Abstract(参考訳): コラボレーションは、STEM(Science, Technology, Engineering and Mathematics)の分野において、学生が成功するために必要なスキルとして認識されている。
しかし,学生人口の増大と教員数の制限により,教師が建設的なフィードバックを提供し,指導的手法による協調的スキルの育成が困難である。
シンプルで説明しやすい機械学習ベースの自動化システムの開発は、この問題を解決するのに役立つ。
本稿では,学生の役割の時間的表現をインプットとして扱う学生グループコラボレーションを評価するために,簡単な時間的cnn深層学習モデルを提案する。
学生グループコラボレーション評価における動的に変化する特徴表現の適用性と,それらが全体のパフォーマンスに与える影響について検討する。
また,学習モデルの意思決定に繋がる重要な時間指標をよりよく理解し,解釈するために,grad-camビジュアライゼーションを用いた。
関連論文リスト
- Representational Alignment Supports Effective Machine Teaching [81.19197059407121]
我々は,機械教育の知見と実践的なコミュニケーションを,表現的アライメントに関する文献と統合する。
教師の精度から表現的アライメントを遠ざける教師付き学習環境を設計する。
論文 参考訳(メタデータ) (2024-06-06T17:48:24Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
言語学習のための2つの対話学習データセットを用いて、様々な生成言語モデルを厳密に分析する。
現在のアプローチでは、制約のある学習シナリオでチューリングをモデル化できますが、制約の少ないシナリオではパフォーマンスが悪くなります。
人的品質評価では, モデルと接地木アノテーションの両方が, 同等のチュータリングの点で低い性能を示した。
論文 参考訳(メタデータ) (2023-01-24T11:00:17Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
NERモデルの堅牢性を改善するために,自己学習型教員学生フレームワークを提案する。
本稿では,2つの教員ネットワークからなる適応型教員学習を提案する。
微粒な学生アンサンブルは、教師モデルの各フラグメントを、生徒の対応するフラグメントの時間移動平均で更新し、各モデルフラグメントのノイズに対する一貫した予測を強化する。
論文 参考訳(メタデータ) (2022-12-13T12:14:09Z) - Iterative Teacher-Aware Learning [136.05341445369265]
人間の教育において、教師と学生はコミュニケーション効率を最大化するために適応的に交流することができる。
本稿では,教師の協調意図を可能性関数に組み込むことができる,勾配最適化に基づく教師認識学習者を提案する。
論文 参考訳(メタデータ) (2021-10-01T00:27:47Z) - RLTutor: Reinforcement Learning Based Adaptive Tutoring System by
Modeling Virtual Student with Fewer Interactions [10.34673089426247]
本稿では,学生の仮想モデルを構築し,指導戦略を最適化する枠組みを提案する。
この結果は,eラーニングシステムにおける理論的指導最適化と実践的応用のバッファとして機能する。
論文 参考訳(メタデータ) (2021-07-31T15:42:03Z) - Demonstrating REACT: a Real-time Educational AI-powered Classroom Tool [0.9899017174990579]
本稿では,教育者の意思決定プロセスを支援するために,EDM技術を用いたリアルタイムAIを活用した新しい教室ツールを提案する。
ReACTは、ユーザフレンドリなグラフィカルインターフェースを備えたデータ駆動ツールである。
学生のパフォーマンスデータを分析し、コンテキストベースのアラートとコースプランニングのための教育者へのレコメンデーションを提供する。
論文 参考訳(メタデータ) (2021-07-30T03:09:59Z) - The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks [0.30458514384586394]
Wits Intelligent Teaching System (WITS) は、学生の感情に関するリアルタイムフィードバックを講師に支援することを目的としている。
AlexNetベースのCNNはトレーニングが成功し、Support Vector Machineアプローチを大きく上回っている。
論文 参考訳(メタデータ) (2021-05-28T12:59:37Z) - Teachers' perspective on fostering computational thinking through
educational robotics [0.6410282200111983]
創造的問題解決モデル(CCPS)は、教育ロボティクス学習活動の設計を改善するために用いられる。
本研究の目的は,教師によるモデルの有効性を検証することである。
教師は、CCPSモデルはスキルを育成するのに有用であるが、特定の介入方法がCT関連認知過程に与える影響を認識できなかった。
論文 参考訳(メタデータ) (2021-05-11T12:31:44Z) - Collaborative Group Learning [42.31194030839819]
協調学習は、小規模学生ネットワークのプールをロバストなローカルミニマへと導くために、知識伝達をうまく応用してきた。
従来のアプローチでは、学生の数が増加すると、学生の均質化が大幅に増加するのが普通だった。
特徴表現の多様化と効果的な正規化の実現を目的とした,効率的なフレームワークである協調型グループ学習を提案する。
論文 参考訳(メタデータ) (2020-09-16T14:34:39Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
本稿では,表情認識における認識精度を向上させるために,PASM(Point Adversarial Self Mining)を提案する。
PASMは、目標タスクに関連する最も情報性の高い位置を見つけるために、ポイント敵攻撃法と訓練された教師ネットワークを使用する。
適応学習教材の生成と教師/学生の更新を複数回行うことができ、ネットワーク能力が反復的に向上する。
論文 参考訳(メタデータ) (2020-08-26T06:39:24Z) - Dual Policy Distillation [58.43610940026261]
教員政策を学生政策に転換する政策蒸留は、深層強化学習の課題において大きな成功を収めた。
本研究では,2人の学習者が同じ環境下で活動し,環境の異なる視点を探索する,学生学生による二重政策蒸留(DPD)を導入する。
この二重学習フレームワークを開発する上で重要な課題は、同時代の学習に基づく強化学習アルゴリズムにおいて、ピア学習者から有益な知識を特定することである。
論文 参考訳(メタデータ) (2020-06-07T06:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。