論文の概要: NViSII: A Scriptable Tool for Photorealistic Image Generation
- arxiv url: http://arxiv.org/abs/2105.13962v1
- Date: Fri, 28 May 2021 16:35:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 13:28:55.814232
- Title: NViSII: A Scriptable Tool for Photorealistic Image Generation
- Title(参考訳): nvisii:フォトリアリスティック画像生成のためのスクリプトツール
- Authors: Nathan Morrical, Jonathan Tremblay, Yunzhi Lin, Stephen Tyree, Stan
Birchfield, Valerio Pascucci, Ingo Wald
- Abstract要約: 本稿では,NVIDIA の OptiX 線追跡エンジンと,高品質な合成画像を生成するために設計された OptiX AI denoiser をベースとした Python ベースのシステムを提案する。
我々のツールは複雑な動的3Dシーンの記述と操作を可能にする。
- 参考スコア(独自算出の注目度): 21.453677837017462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a Python-based renderer built on NVIDIA's OptiX ray tracing engine
and the OptiX AI denoiser, designed to generate high-quality synthetic images
for research in computer vision and deep learning. Our tool enables the
description and manipulation of complex dynamic 3D scenes containing object
meshes, materials, textures, lighting, volumetric data (e.g., smoke), and
backgrounds. Metadata, such as 2D/3D bounding boxes, segmentation masks, depth
maps, normal maps, material properties, and optical flow vectors, can also be
generated. In this work, we discuss design goals, architecture, and
performance. We demonstrate the use of data generated by path tracing for
training an object detector and pose estimator, showing improved performance in
sim-to-real transfer in situations that are difficult for traditional
raster-based renderers. We offer this tool as an easy-to-use, performant,
high-quality renderer for advancing research in synthetic data generation and
deep learning.
- Abstract(参考訳): 本稿では,NVIDIA の OptiX 線追跡エンジンと OptiX AI denoiser 上に構築した Python ベースのレンダラーについて述べる。
我々のツールは、オブジェクトメッシュ、材料、テクスチャ、照明、体積データ(煙など)、背景を含む複雑な動的3Dシーンの記述と操作を可能にする。
2D/3D境界ボックス、セグメンテーションマスク、深度マップ、通常の地図、材料特性、光学フローベクトルなどのメタデータも生成できる。
本研究では,設計目標,アーキテクチャ,パフォーマンスについて論じる。
本研究では,従来のラスタ型レンダラーでは困難な状況において,オブジェクト検出器とポーズ推定器の訓練にパストレースによって生成されたデータを用いて,シミュレート・リアル転送の性能向上を示す。
私たちはこのツールを、合成データ生成とディープラーニングの研究を進めるための、使いやすい高性能なレンダラとして提供しています。
関連論文リスト
- Perspective-aware Convolution for Monocular 3D Object Detection [2.33877878310217]
画像の長距離依存性をキャプチャする新しい視点対応畳み込み層を提案する。
画像画素ごとの深度軸に沿った特徴を抽出するために畳み込みカーネルを強制することにより、パースペクティブ情報をネットワークアーキテクチャに組み込む。
我々は、KITTI3Dデータセットの性能向上を実証し、簡単なベンチマークで平均23.9%の精度を達成した。
論文 参考訳(メタデータ) (2023-08-24T17:25:36Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
本稿では,3次元オートデコーダをコアとした静的・明瞭な3次元アセットの生成に対して,新しいアプローチを提案する。
3D Autodecoderフレームワークは、ターゲットデータセットから学んだプロパティを潜時空間に埋め込む。
次に、適切な中間体積潜在空間を特定し、ロバストな正規化と非正規化演算を導入する。
論文 参考訳(メタデータ) (2023-07-07T17:59:14Z) - PixHt-Lab: Pixel Height Based Light Effect Generation for Image
Compositing [34.76980642388534]
影や反射のような照明効果は、合成画像が現実的で視覚的に魅力的になるのに重要である。
このような効果を生成するために、従来のコンピュータグラフィックスは物理ベースと3D幾何学を用いている。
最近のディープラーニングベースのアプローチでは、ソフトシャドウと反射を生成するピクセルの高さ表現が導入されている。
本稿では,ピクセルの高さ表現から3次元空間への明示的なマッピングを利用するPixHt-Labを紹介する。
論文 参考訳(メタデータ) (2023-02-28T23:52:01Z) - PhotoScene: Photorealistic Material and Lighting Transfer for Indoor
Scenes [84.66946637534089]
PhotoSceneは、シーンの入力画像を取得し、高品質な素材と同様の照明を備えたフォトリアリスティックデジタルツインを構築するフレームワークである。
プロシージャ素材グラフを用いてシーン素材をモデル化し、そのようなグラフはフォトリアリスティックおよび解像度非依存の材料を表す。
ScanNet, SUN RGB-D, ストック写真からのオブジェクトとレイアウトの再構築について検討し, 高品質で完全に再現可能な3Dシーンを再現できることを実証した。
論文 参考訳(メタデータ) (2022-07-02T06:52:44Z) - AUV-Net: Learning Aligned UV Maps for Texture Transfer and Synthesis [78.17671694498185]
AUV-Netは,3次元表面を2次元に整列したUV空間に埋め込むことを学習する。
結果として、テクスチャはオブジェクト間で整列し、画像の生成モデルによって容易に合成できる。
学習されたUVマッピングとアライメントテクスチャ表現は、テクスチャ転送、テクスチャ合成、テクスチャ化された単一ビュー3D再構成など、さまざまなアプリケーションを可能にする。
論文 参考訳(メタデータ) (2022-04-06T21:39:24Z) - Ground material classification and for UAV-based photogrammetric 3D data
A 2D-3D Hybrid Approach [1.3359609092684614]
近年,物理環境を表す3次元仮想データを作成するために,多くの領域でフォトグラム法が広く用いられている。
これらの最先端技術は、迅速な3D戦場再建、仮想訓練、シミュレーションを目的として、アメリカ陸軍と海軍の注意を引き付けている。
論文 参考訳(メタデータ) (2021-09-24T22:29:26Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
1枚の画像からアルベド, 正常, 深さ, 3次元の空間的変化を共同で推定する問題に対処する。
既存のほとんどの方法は、シーンの3D特性を無視して、画像から画像への変換としてタスクを定式化する。
本研究では3次元空間変動照明を定式化する統合学習ベースの逆フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-13T15:29:03Z) - Deep Direct Volume Rendering: Learning Visual Feature Mappings From
Exemplary Images [57.253447453301796]
本稿では,ディープ・ダイレクト・ボリューム・レンダリング(Deep Direct Volume Rendering,DVR)を導入し,ディープ・ニューラル・ネットワークをDVRアルゴリズムに統合する。
潜在色空間におけるレンダリングを概念化し、深層アーキテクチャを用いて特徴抽出と分類のための暗黙マッピングを学習できるようにする。
我々の一般化は、画像空間の例から直接エンドツーエンドにトレーニングできる新しいボリュームレンダリングアーキテクチャを導き出すのに役立つ。
論文 参考訳(メタデータ) (2021-06-09T23:03:00Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
合成3Dモデルからリアルな画像を生成するためのオートエンコーダを提案し,同時に実像を本質的な形状と外観特性に分解する。
実験により, レンダリングと分解の併用処理が有益であることが確認され, 画像から画像への翻訳の質的, 定量的なベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-06-29T12:53:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。