論文の概要: Modeling Discriminative Representations for Out-of-Domain Detection with
Supervised Contrastive Learning
- arxiv url: http://arxiv.org/abs/2105.14289v1
- Date: Sat, 29 May 2021 12:54:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-05 16:58:18.651419
- Title: Modeling Discriminative Representations for Out-of-Domain Detection with
Supervised Contrastive Learning
- Title(参考訳): 教師付きコントラスト学習によるドメイン外検出のための識別表現のモデル化
- Authors: Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu, Yanan Wu, Hong Xu,
Huixing Jiang and Weiran Xu
- Abstract要約: OOD検出の主な課題は、識別的セマンティックな特徴を学習することである。
クラス内分散を最小限に抑えるための教師付きコントラスト学習目標を提案する。
我々は,サンプルの擬似多様なビューを得るために,対角的拡張機構を用いる。
- 参考スコア(独自算出の注目度): 16.77134235390429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting Out-of-Domain (OOD) or unknown intents from user queries is
essential in a task-oriented dialog system. A key challenge of OOD detection is
to learn discriminative semantic features. Traditional cross-entropy loss only
focuses on whether a sample is correctly classified, and does not explicitly
distinguish the margins between categories. In this paper, we propose a
supervised contrastive learning objective to minimize intra-class variance by
pulling together in-domain intents belonging to the same class and maximize
inter-class variance by pushing apart samples from different classes. Besides,
we employ an adversarial augmentation mechanism to obtain pseudo diverse views
of a sample in the latent space. Experiments on two public datasets prove the
effectiveness of our method capturing discriminative representations for OOD
detection.
- Abstract(参考訳): タスク指向のダイアログシステムでは、ユーザクエリからドメイン外(ood)や未知のインテントを検出することが不可欠です。
ood検出の重要な課題は、識別的意味的特徴を学ぶことである。
伝統的なクロスエントロピー損失は、サンプルが正しく分類されているかどうかのみに焦点を当て、カテゴリ間のマージンを明確に区別しない。
本稿では,同じクラスに属するドメイン内インテントをまとめてクラス内分散を最小化し,異なるクラスからサンプルを分離することでクラス間分散を最大化する,教師付きコントラスト学習目的を提案する。
さらに,潜伏空間におけるサンプルの擬似多彩なビューを得るために,対角的拡張機構を用いる。
2つの公開データセットの実験は、OOD検出のための識別表現をキャプチャする手法の有効性を証明した。
関連論文リスト
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
オープンセットのシナリオでは、ラベルなしデータセットには、イン・ディストリビューション(ID)クラスとアウト・オブ・ディストリビューション(OOD)クラスの両方が含まれている。
このような設定で半教師付き検出器を適用すると、OODクラスをIDクラスとして誤分類する可能性がある。
我々は、CFL-Detector(Collaborative Feature-Logits Detector)と呼ばれるシンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-11-20T02:57:35Z) - Diversity-grounded Channel Prototypical Learning for Out-of-Distribution Intent Detection [18.275098909064127]
本研究では,大規模言語モデル(LLM)のための新しい微調整フレームワークを提案する。
ダイバーシティグラウンドのプロンプトチューニング手法を用いて,各IDクラスのセマンティックプロトタイプを構築した。
徹底的な評価のために,本手法を一般的な微調整手法と比較した。
論文 参考訳(メタデータ) (2024-09-17T12:07:17Z) - Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model [0.0]
アウト・オブ・ディストリビューション(OOD)検出は、マシンラーニングモデルの信頼性とセキュリティを確保するための重要なタスクである。
本稿では,ODPCと呼ばれる新しい手法を提案し,大規模言語モデルを用いてOODピア・セマンティクスのクラスを生成する。
5つのベンチマークデータセットの実験により,提案手法は最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2024-03-20T06:04:05Z) - WDiscOOD: Out-of-Distribution Detection via Whitened Linear Discriminant
Analysis [21.023001428704085]
本稿では,クラス固有情報とクラス非依存情報に基づく新しい特徴空間OOD検出スコアを提案する。
WDiscOODという手法の有効性を,大規模なImageNet-1kベンチマークで検証した。
論文 参考訳(メタデータ) (2023-03-14T00:13:57Z) - Learning Common Rationale to Improve Self-Supervised Representation for
Fine-Grained Visual Recognition Problems [61.11799513362704]
我々は、インスタンスやクラスでよく見られる差別的手がかりを識別するための、追加のスクリーニングメカニズムの学習を提案する。
SSL目標から誘導されるGradCAMを単純に利用することで、共通な有理性検出器が学習可能であることを示す。
論文 参考訳(メタデータ) (2023-03-03T02:07:40Z) - Cluster-aware Contrastive Learning for Unsupervised Out-of-distribution
Detection [0.0]
教師なしアウト・オブ・ディストリビューション(OOD)検出は、ラベル情報なしでトレーニングデータの分布外に落下するサンプルを分離することを目的としている。
本稿では,インスタンスレベルの情報と意味レベルの情報の両方を考慮した,教師なしOOD検出のためのクラスタ対応コントラスト学習(CCL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-06T07:21:03Z) - Understanding the properties and limitations of contrastive learning for
Out-of-Distribution detection [3.2689702143620143]
アウト・オブ・ディストリビューション(OOD)検出に対する一般的なアプローチは、コントラスト学習と呼ばれる自己教師付き学習技術に基づいている。
本稿では,OOD検出のための既存のコントラスト学習手法の有効性と限界を理解することを目的とする。
論文 参考訳(メタデータ) (2022-11-06T17:33:29Z) - Towards Intrinsic Common Discriminative Features Learning for Face
Forgery Detection using Adversarial Learning [59.548960057358435]
本稿では, 対人学習を利用して, 異なる偽造法と顔の同一性による負の効果を除去する手法を提案する。
我々の顔偽造検出モデルは、偽造法や顔の同一性の影響を排除し、共通の識別的特徴を抽出することを学ぶ。
論文 参考訳(メタデータ) (2022-07-08T09:23:59Z) - Dual Contrastive Learning for General Face Forgery Detection [64.41970626226221]
本稿では,正と負のペアデータを構成するDCL (Dual Contrastive Learning) という新しい顔偽造検出フレームワークを提案する。
本研究は, 事例内コントラスト学習(Intra-ICL)において, 偽造顔における局所的内容の不整合に焦点をあてる。
論文 参考訳(メタデータ) (2021-12-27T05:44:40Z) - A Low Rank Promoting Prior for Unsupervised Contrastive Learning [108.91406719395417]
提案手法は,従来の低階の促進をコントラスト学習の枠組みに効果的に組み込む新しい確率的グラフィカルモデルを構築する。
我々の仮説は、同じインスタンスクラスに属するすべてのサンプルが、小さな次元の同じ部分空間上にあることを明示的に要求する。
実証的な証拠は、提案アルゴリズムが複数のベンチマークにおける最先端のアプローチを明らかに上回っていることを示している。
論文 参考訳(メタデータ) (2021-08-05T15:58:25Z) - Category Contrast for Unsupervised Domain Adaptation in Visual Tasks [92.9990560760593]
本稿では,視覚的 UDA タスクのインスタンス識別に先立って,セマンティックな事前情報を導入した新しいカテゴリコントラスト手法(CaCo)を提案する。
CaCoは既存のUDAメソッドを補完し、半教師付き学習や教師なしモデル適応などの他の学習設定に一般化可能である。
論文 参考訳(メタデータ) (2021-06-05T12:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。