論文の概要: Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model
- arxiv url: http://arxiv.org/abs/2403.13324v1
- Date: Wed, 20 Mar 2024 06:04:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 17:48:13.220069
- Title: Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model
- Title(参考訳): 大規模言語モデルを用いたピアクラスを用いたアウト・オブ・ディストリビューション検出
- Authors: K Huang, G Song, Hanwen Su, Jiyan Wang,
- Abstract要約: アウト・オブ・ディストリビューション(OOD)検出は、マシンラーニングモデルの信頼性とセキュリティを確保するための重要なタスクである。
本稿では,ODPCと呼ばれる新しい手法を提案し,大規模言語モデルを用いてOODピア・セマンティクスのクラスを生成する。
5つのベンチマークデータセットの実験により,提案手法は最先端の結果が得られることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Out-of-distribution (OOD) detection is a critical task to ensure the reliability and security of machine learning models deployed in real-world applications. Conventional methods for OOD detection that rely on single-modal information, often struggle to capture the rich variety of OOD instances. The primary difficulty in OOD detection arises when an input image has numerous similarities to a particular class in the in-distribution (ID) dataset, e.g., wolf to dog, causing the model to misclassify it. Nevertheless, it may be easy to distinguish these classes in the semantic domain. To this end, in this paper, a novel method called ODPC is proposed, in which specific prompts to generate OOD peer classes of ID semantics are designed by a large language model as an auxiliary modality to facilitate detection. Moreover, a contrastive loss based on OOD peer classes is devised to learn compact representations of ID classes and improve the clarity of boundaries between different classes. The extensive experiments on five benchmark datasets show that the method we propose can yield state-of-the-art results.
- Abstract(参考訳): Out-of-distriion(OOD)検出は、現実世界のアプリケーションにデプロイされた機械学習モデルの信頼性とセキュリティを保証するための重要なタスクである。
単一モーダル情報に依存する従来のOOD検出方法は、多種多様なOODインスタンスをキャプチャするのに苦労することが多い。
OOD検出における主な困難は、入力画像が犬に対するIDデータセット(例:オオカミ)の特定のクラスと多くの類似性を持つときに生じ、モデルがそれを誤分類する。
それでも、セマンティックドメインでこれらのクラスを区別するのは簡単かもしれない。
そこで本研究では,大規模言語モデルを用いてODPCと呼ばれる新しい手法を提案し,OODピアクラスのIDセマンティクスを生成するための特定のプロンプトを,検出を容易にするための補助的モダリティとして設計する。
さらに、OODピアクラスに基づく対照的な損失は、IDクラスのコンパクトな表現を学習し、異なるクラス間の境界の明確化を改善するために考案された。
5つのベンチマークデータセットに対する広範な実験により、提案手法が最先端の結果をもたらすことを示す。
関連論文リスト
- Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
本稿では,非自明なOOD検出問題に対処するため,Margin bounded Confidence Scores (MaCS) と呼ばれる新しい手法を提案する。
MaCS は ID と OOD のスコアの差を拡大し、決定境界をよりコンパクトにする。
画像分類タスクのための様々なベンチマークデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-22T05:40:25Z) - Diversity-grounded Channel Prototypical Learning for Out-of-Distribution Intent Detection [18.275098909064127]
本研究では,大規模言語モデル(LLM)のための新しい微調整フレームワークを提案する。
ダイバーシティグラウンドのプロンプトチューニング手法を用いて,各IDクラスのセマンティックプロトタイプを構築した。
徹底的な評価のために,本手法を一般的な微調整手法と比較した。
論文 参考訳(メタデータ) (2024-09-17T12:07:17Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
大きな言語モデル(LLM)は豊富な世界の知識をエンコードし、クラスごとに記述的な特徴を生成するよう促すことができる。
本稿では,LLMの選択的生成によるOOD検出性能向上のための世界知識の適用を提案する。
論文 参考訳(メタデータ) (2023-10-12T04:14:28Z) - Class Relevance Learning For Out-of-distribution Detection [16.029229052068]
本稿では,OOD検出に適したクラス関連学習手法を提案する。
本手法は,OODパイプライン内のクラス間関係を戦略的に活用し,総合的なクラス関連学習フレームワークを確立する。
論文 参考訳(メタデータ) (2023-09-21T08:38:21Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
アウト・オブ・ディストリビューション(OOD)検出は、イン・ディストリビューション(ID)トレーニングプロセス中にラベルが見られない未知のデータを検出することを目的としている。
近年の表現学習の進歩により,距離に基づくOOD検出がもたらされる。
グローバルな視覚情報と局所的な情報の両方を活用する第1のフレームワークであるマルチスケールOOD検出(MODE)を提案する。
論文 参考訳(メタデータ) (2023-08-20T11:56:25Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習(ML)システムの安全性と信頼性を保証するために重要なトレーニングデータとは異なるテストサンプルを特定する。
本稿では,2値分類器とコントラスト学習コンポーネントを組み合わせた,汎用的な弱教師付きOOD検出フレームワークWOODを提案する。
提案したWOODモデルを複数の実世界のデータセット上で評価し、実験結果により、WOODモデルがマルチモーダルOOD検出の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-24T18:50:49Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Enhancing Out-of-Distribution Detection in Natural Language
Understanding via Implicit Layer Ensemble [22.643719584452455]
out-of-distribution (OOD) 検出は、意図したデータ分布からoutlierを識別することを目的としている。
本研究では,中間機能に階層化表現の学習を促すコントラスト学習に基づく新しいフレームワークを提案する。
私たちのアプローチは他の作業よりもはるかに効果的です。
論文 参考訳(メタデータ) (2022-10-20T06:05:58Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
本研究の目的は,OOD検出手法の暗黙的なスコアリング機能を識別すると同時に,共通の目的を認識することである。
内分布と外分布の2値差はOOD検出問題のいくつかの異なる定式化と等価であることを示す。
また, 外乱露光で使用される信頼損失は, 理論上最適のスコアリング関数と非自明な方法で異なる暗黙的なスコアリング関数を持つことを示した。
論文 参考訳(メタデータ) (2022-06-20T16:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。