Three-dimensional multimodal medical imaging system based on free-hand
ultrasound and structured light
- URL: http://arxiv.org/abs/2105.14355v1
- Date: Sat, 29 May 2021 18:50:00 GMT
- Title: Three-dimensional multimodal medical imaging system based on free-hand
ultrasound and structured light
- Authors: Jhacson Meza, Sonia H. Contreras-Ortiz, Lenny A. Romero, Andres G.
Marrugo
- Abstract summary: We propose a 3D multimodal medical imaging system that combines freehand ultrasound and structured light 3D reconstruction in a single coordinate system without requiring registration.
The system complements the internal 3D information acquired with ultrasound, with the external surface measured with the structure light technique.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a three-dimensional (3D) multimodal medical imaging system that
combines freehand ultrasound and structured light 3D reconstruction in a single
coordinate system without requiring registration. To the best of our knowledge,
these techniques have not been combined before as a multimodal imaging
technique. The system complements the internal 3D information acquired with
ultrasound, with the external surface measured with the structure light
technique. Moreover, the ultrasound probe's optical tracking for pose
estimation was implemented based on a convolutional neural network.
Experimental results show the system's high accuracy and reproducibility, as
well as its potential for preoperative and intraoperative applications. The
experimental multimodal error, or the distance from two surfaces obtained with
different modalities, was 0.12 mm. The code is available as a Github
repository.
Related papers
- 3D Freehand Ultrasound using Visual Inertial and Deep Inertial Odometry for Measuring Patellar Tracking [4.252549987351643]
Patellofemoral joint (PFJ) issues affect one in four people, with 20% experiencing chronic knee pain despite treatment.
Traditional imaging methods like CT and MRI face challenges, including cost and metal artefacts.
A new system to monitor joint motion could significantly improve understanding of PFJ dynamics.
arXiv Detail & Related papers (2024-04-24T12:52:43Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Freehand 2D Ultrasound Probe Calibration for Image Fusion with 3D MRI/CT [13.4304925464326]
This will enable us to visualize US image data during surgical procedures using augmented reality.
A near-millimeter accuracy can be achieved with the proposed approach.
arXiv Detail & Related papers (2023-03-14T08:55:24Z) - Automatic Diagnosis of Carotid Atherosclerosis Using a Portable Freehand
3D Ultrasound Imaging System [18.73291257371106]
A total of 127 3D carotid artery scans were acquired using a portable 3D US system.
A U-Net segmentation network was applied to extract the carotid artery on 2D transverse frame.
A novel 3D reconstruction algorithm using fast dot projection (FDP) method with position regularization was proposed to reconstruct the carotid artery volume.
arXiv Detail & Related papers (2023-01-08T17:35:36Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
We propose a fully automated pipeline for both detection and matching of curvilinear structures in stereo pairs.
We mainly focus on 3D reconstruction of dislocations from stereo pairs of TEM images.
arXiv Detail & Related papers (2021-10-14T23:05:47Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - A Geometry-Informed Deep Learning Framework for Ultra-Sparse 3D
Tomographic Image Reconstruction [13.44786774177579]
We establish a geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction.
We demonstrate that the seamless inclusion of known priors is essential to enhance the performance of 3D volumetric computed tomography imaging.
arXiv Detail & Related papers (2021-05-25T06:20:03Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.