論文の概要: How effective are Graph Neural Networks in Fraud Detection for Network
Data?
- arxiv url: http://arxiv.org/abs/2105.14568v1
- Date: Sun, 30 May 2021 15:17:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-02 11:24:53.776452
- Title: How effective are Graph Neural Networks in Fraud Detection for Network
Data?
- Title(参考訳): グラフニューラルネットワークはネットワークデータの不正検出にどの程度有効か?
- Authors: Ronald D. R. Pereira and Fabr\'icio Murai
- Abstract要約: グラフベースニューラルネットワーク(GNN)は、ノード(およびグラフ)の表現を学習するために作成された最近のモデルである。
金融詐欺は社会経済的関連性や、正の(詐欺)と負の(定期的な)取引(英語版)の間の極端な不均衡など、特定の課題を提示することで際立っている。
この2つの課題を考慮し,既存のネットワーク不正検出手法の評価実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based Neural Networks (GNNs) are recent models created for learning
representations of nodes (and graphs), which have achieved promising results
when detecting patterns that occur in large-scale data relating different
entities. Among these patterns, financial fraud stands out for its
socioeconomic relevance and for presenting particular challenges, such as the
extreme imbalance between the positive (fraud) and negative (legitimate
transactions) classes, and the concept drift (i.e., statistical properties of
the data change over time). Since GNNs are based on message propagation, the
representation of a node is strongly impacted by its neighbors and by the
network's hubs, amplifying the imbalance effects. Recent works attempt to adapt
undersampling and oversampling strategies for GNNs in order to mitigate this
effect without, however, accounting for concept drift. In this work, we conduct
experiments to evaluate existing techniques for detecting network fraud,
considering the two previous challenges. For this, we use real data sets,
complemented by synthetic data created from a new methodology introduced here.
Based on this analysis, we propose a series of improvement points that should
be investigated in future research.
- Abstract(参考訳): グラフベースニューラルネットワーク(英: graph-based neural network、gnns)は、ノード(およびグラフ)の表現を学習するために作られた最近のモデルである。
これらのパターンのうち、金融詐欺はその社会経済的関連性と、ポジティブな(詐欺)クラスとネガティブな(合法的な取引)クラスの極端な不均衡、そして概念ドリフト(すなわち、時間とともにデータの変化の統計的特性)のような特定の課題を提示する上で際立っている。
GNNはメッセージの伝搬に基づくため、ノードの表現は隣人やネットワークのハブによって強く影響され、不均衡効果が増幅される。
最近の研究は、コンセプトドリフトを考慮せずにこの効果を緩和するために、GNNのアンダーサンプリングとオーバーサンプリング戦略を適応させようとしている。
本研究では,従来の2つの課題を考慮したネットワーク不正検出手法の評価実験を行った。
このために私たちは、ここで導入された新しい方法論から生成された合成データによって補完される、実際のデータセットを使用します。
この分析に基づいて,今後の研究で検討すべき改善点のシリーズを提案する。
関連論文リスト
- Advanced Financial Fraud Detection Using GNN-CL Model [13.5240775562349]
本稿では,金融不正検出の分野において,革新的なGNN-CLモデルを提案する。
グラフニューラルネットワーク(gnn)、畳み込みニューラルネットワーク(cnn)、長期記憶(LSTM)の利点を組み合わせる。
本稿では,マルチ層パーセプトロン(MLPS)を用いてノードの類似性を推定する。
論文 参考訳(メタデータ) (2024-07-09T03:59:06Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Fair Graph Neural Network with Supervised Contrastive Regularization [12.666235467177131]
公平性を考慮したグラフニューラルネットワーク(GNN)の学習モデルを提案する。
提案手法は, コントラスト損失と環境損失を統合し, 精度と公正性を両立させる。
論文 参考訳(メタデータ) (2024-04-09T07:49:05Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - The Devil is in the Conflict: Disentangled Information Graph Neural
Networks for Fraud Detection [17.254383007779616]
性能劣化は主にトポロジと属性の矛盾に起因すると我々は主張する。
注意機構を用いて2つの視点を適応的に融合する簡易かつ効果的な手法を提案する。
我々のモデルは、実世界の不正検出データセットで最先端のベースラインを大幅に上回ることができる。
論文 参考訳(メタデータ) (2022-10-22T08:21:49Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
グラフニューラルネットワーク(GNN)は不正検出に強い性能を示している。
ラベル付きデータは大規模な産業問題、特に不正検出には不十分である。
よりラベルのないデータを活用するための新しいグラフ事前学習戦略を提案する。
論文 参考訳(メタデータ) (2021-10-04T03:42:09Z) - Unveiling the potential of Graph Neural Networks for robust Intrusion
Detection [2.21481607673149]
本稿では,グラフとして構造化された攻撃の流れパターンを学習するための新しいグラフニューラルネットワーク(GNN)モデルを提案する。
我々のモデルは従来の実験と同等の精度を維持することができる一方、最先端のML技術は敵攻撃下で50%の精度(F1スコア)を低下させる。
論文 参考訳(メタデータ) (2021-07-30T16:56:39Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。