Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT
- URL: http://arxiv.org/abs/2105.14625v1
- Date: Sun, 30 May 2021 21:16:51 GMT
- Title: Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT
- Authors: Thomas Bartz-Beielstein
- Abstract summary: This article demonstrates how the architecture-level parameters of deep learning models that were implemented in Keras/tensorflow can be optimized.
The implementation of the tuning procedure is 100 % based on R, the software environment for statistical computing.
- Score: 0.40611352512781856
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A surrogate model based hyperparameter tuning approach for deep learning is
presented. This article demonstrates how the architecture-level parameters
(hyperparameters) of deep learning models that were implemented in
Keras/tensorflow can be optimized. The implementation of the tuning procedure
is 100 % based on R, the software environment for statistical computing. With a
few lines of code, existing R packages (tfruns and SPOT) can be combined to
perform hyperparameter tuning. An elementary hyperparameter tuning task (neural
network and the MNIST data) is used to exemplify this approach.
Related papers
- ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
We propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections.
In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters.
arXiv Detail & Related papers (2024-05-30T17:26:02Z) - Dynamic Adapter Meets Prompt Tuning: Parameter-Efficient Transfer Learning for Point Cloud Analysis [51.14136878142034]
Point cloud analysis has achieved outstanding performance by transferring point cloud pre-trained models.
Existing methods for model adaptation usually update all model parameters, which is inefficient as it relies on high computational costs.
In this paper, we aim to study parameter-efficient transfer learning for point cloud analysis with an ideal trade-off between task performance and parameter efficiency.
arXiv Detail & Related papers (2024-03-03T08:25:04Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
We propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges.
Considering the redundancy in existing architectures, we first utilize the mode approximation to generate 0.1M trainable parameters to implement the multimodal prompt tuning.
A thorough evaluation on six cross-modal benchmarks shows that it not only outperforms the state-of-the-art but even outperforms the full fine-tuning approach.
arXiv Detail & Related papers (2023-05-15T06:40:56Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
We propose a gradient-based subset selection framework for hyper- parameter tuning.
We show that using gradient-based data subsets for hyper- parameter tuning achieves significantly faster turnaround times and speedups of 3$times$-30$times$.
arXiv Detail & Related papers (2022-03-15T19:25:01Z) - Towards Robust and Automatic Hyper-Parameter Tunning [39.04604349338802]
We introduce a new class of HPO method and explore how the low-rank factorization of intermediate layers of a convolutional network can be used to define an analytical response surface.
We quantify how this surface behaves as a surrogate to model performance and can be solved using a trust-region search algorithm, which we call autoHyper.
arXiv Detail & Related papers (2021-11-28T05:27:34Z) - Experimental Investigation and Evaluation of Model-based Hyperparameter
Optimization [0.3058685580689604]
This article presents an overview of theoretical and practical results for popular machine learning algorithms.
The R package mlr is used as a uniform interface to the machine learning models.
arXiv Detail & Related papers (2021-07-19T11:37:37Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian
Optimization and Tuning Rules [0.6875312133832078]
We build a new algorithm for evaluating and analyzing the results of the network on the training and validation sets.
We use a set of tuning rules to add new hyper-parameters and/or to reduce the hyper- parameter search space to select a better combination.
arXiv Detail & Related papers (2020-06-03T08:53:48Z) - Weighted Random Search for CNN Hyperparameter Optimization [0.0]
We introduce the weighted Random Search (WRS) method, a combination of Random Search (RS) and probabilistic greedy.
The criterion is the classification accuracy achieved within the same number of tested combinations of hyperparameter values.
According to our experiments, the WRS algorithm outperforms the other methods.
arXiv Detail & Related papers (2020-03-30T09:40:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.