Extended Bose-Hubbard models with Rydberg macrodimer dressing
- URL: http://arxiv.org/abs/2105.15046v3
- Date: Thu, 31 Mar 2022 15:33:23 GMT
- Title: Extended Bose-Hubbard models with Rydberg macrodimer dressing
- Authors: Mathieu Barbier, Simon Hollerith, Walter Hofstetter
- Abstract summary: We propose to use bosonic quantum gases dressed with molecular bound states in Rydberg interaction potentials.
We study the molecular Rabi coupling with respect to principal quantum number and trapping frequency of the ground state atoms.
We find a supersolid phase by slowly ramping the molecular Rabi coupling of an initially prepared superfluid.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extended Hubbard models have proven to bear novel quantum states, but their
experimental realization remains challenging. In this work we propose to use
bosonic quantum gases dressed with molecular bound states in Rydberg
interaction potentials for the observation of these quantum states. We study
the molecular Rabi coupling with respect to principal quantum number and
trapping frequency of the ground state atoms for various molecular potentials
of Rubidium and Potassium, and the hereby resulting dressed interaction
strength. Additionally, we propose a two-color excitation scheme which
significantly increases the dressed interaction and cancels AC Stark shifts
limiting the atomic motion in the itinerant regime. We study the various
equilibrium phases of the corresponding extended Bose-Hubbard model by means of
the Cluster Gutzwiller approach and perform time evolution simulations via the
Lindblad master equation. We find a supersolid phase by slowly ramping the
molecular Rabi coupling of an initially prepared superfluid and discuss the
role of dissipation.
Related papers
- Realization of a Rydberg-dressed extended Bose Hubbard model [0.0]
We realize an effective one-dimensional extended Bose-Hubbard model (eBHM)
We probe the correlated out-of-equilibrium dynamics of extended-range repulsively-bound pairs at low filling, and kinetically-constrained "hard rods" at half filling.
Our results demonstrate the versatility of Rydberg dressing in engineering itinerant optical lattice-based quantum simulators.
arXiv Detail & Related papers (2024-05-30T15:07:59Z) - Realization of an extremely anisotropic Heisenberg magnet in Rydberg
atom arrays [4.209816265441194]
We employ a Rydberg quantum simulator to experimentally demonstrate strongly correlated spin transport in anisotropic Heisenberg magnets.
In our approach, the motion of magnons is controlled by an induced spin-exchange interaction through Rydberg dressing.
As the most prominent signature of a giant anisotropy, we show that nearby Rydberg excitations form distinct types of magnon bound states.
arXiv Detail & Related papers (2023-07-10T04:52:52Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Quantum Phases from Competing Van der Waals and Dipole-Dipole
Interactions of Rydberg Atoms [0.0]
Competing short- and long-range interactions represent distinguished ingredients for the formation of complex quantum many-body phases.
We leverage the van der Waals and dipole-dipole interactions of the Rydberg atoms to obtain the zero-temperature phase diagram for a uniform chain and a dimer model.
This demonstrates the versatility of the Rydberg platform in studying physics involving short- and long-ranged interactions simultaneously.
arXiv Detail & Related papers (2023-03-30T15:45:06Z) - Observation of magnon bound states in the long-range, anisotropic Heisenberg model [0.0]
Floquet engineering is a versatile tool for realizing novel Hamiltonians.
We experimentally realize a long-ranged, anisotropic Heisenberg model with tunable interactions in a trapped ion quantum simulator.
arXiv Detail & Related papers (2022-12-07T19:00:22Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Dynamical hadron formation in long-range interacting quantum spin chains [0.0]
We study scattering events due to meson collisions in a quantum spin chain with long-range interactions.
We show how novel hadronic boundstates, e.g. with four constituent particles akin to tetraquarks, may form dynamically in fusion events.
We propose two controllable protocols which allow for a clear observation of dynamical hadron formation.
arXiv Detail & Related papers (2022-04-12T09:06:47Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.