Zero-bias Deep Learning Enabled Quick and Reliable Abnormality Detection
in IoT
- URL: http://arxiv.org/abs/2105.15098v1
- Date: Thu, 8 Apr 2021 03:31:50 GMT
- Title: Zero-bias Deep Learning Enabled Quick and Reliable Abnormality Detection
in IoT
- Authors: Yongxin Liu, Jian Wang, Jianqiang Li, Shuteng Niu, Houbing Song
- Abstract summary: This paper integrates zero-bias DNN and Quickest Event Detection algorithms.
It provides a holistic framework for quick and reliable detection of both abnormalities and time-dependent abnormal events.
We demonstrate the effectiveness of the framework using both massive signal records from real-world aviation communication systems and simulated data.
- Score: 18.474662677341012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Abnormality detection is essential to the performance of safety-critical and
latency-constrained systems. However, as systems are becoming increasingly
complicated with a large quantity of heterogeneous data, conventional
statistical change point detection methods are becoming less effective and
efficient. Although Deep Learning (DL) and Deep Neural Networks (DNNs) are
increasingly employed to handle heterogeneous data, they still lack theoretic
assurable performance and explainability. This paper integrates zero-bias DNN
and Quickest Event Detection algorithms to provide a holistic framework for
quick and reliable detection of both abnormalities and time-dependent abnormal
events in the Internet of Things (IoT). We first use the zero-bias dense layer
to increase the explainability of DNN. We provide a solution to convert
zero-bias DNN classifiers into performance assured binary abnormality
detectors. Using the converted abnormality detector, we then present a
sequential quickest detection scheme that provides the theoretically assured
lowest abnormal event detection delay under false alarm constraints. Finally,
we demonstrate the effectiveness of the framework using both massive signal
records from real-world aviation communication systems and simulated data. Code
and data of our work is available at
\url{https://github.com/pcwhy/AbnormalityDetectionInZbDNN}
Related papers
- DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
We present DeepHYDRA (Deep Hybrid DBSCAN/Reduction-Based Anomaly Detection)
It combines DBSCAN and learning-based anomaly detection.
It is shown to reliably detect different types of anomalies in both large and complex datasets.
arXiv Detail & Related papers (2024-05-13T13:47:15Z) - Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series [1.223779595809275]
State-of-the-art approaches based on deep learning via neural networks achieve outstanding performance at anomaly recognition.
We show that our method has higher training efficiency, outperforms the accuracy of state-of-the-art neural architectures.
arXiv Detail & Related papers (2024-04-15T15:42:12Z) - DTAAD: Dual Tcn-Attention Networks for Anomaly Detection in Multivariate Time Series Data [0.0]
We propose an anomaly detection and diagnosis model, DTAAD, based on Transformer and Dual Temporal Convolutional Network (TCN)
scaling methods and feedback mechanisms are introduced to improve prediction accuracy and expand correlation differences.
Our experiments on seven public datasets validate that DTAAD exceeds the majority of currently advanced baseline methods in both detection and diagnostic performance.
arXiv Detail & Related papers (2023-02-17T06:59:45Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Fast Wireless Sensor Anomaly Detection based on Data Stream in Edge
Computing Enabled Smart Greenhouse [5.716360276016705]
Edge computing enabled smart greenhouse is a representative application of Internet of Things technology.
Traditional anomaly detection algorithms have not properly considered the inherent characteristics of data stream produced by wireless sensor.
arXiv Detail & Related papers (2021-07-28T13:32:12Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.