Coherent Local Explanations for Mathematical Optimization
- URL: http://arxiv.org/abs/2502.04840v1
- Date: Fri, 07 Feb 2025 11:18:04 GMT
- Title: Coherent Local Explanations for Mathematical Optimization
- Authors: Daan Otto, Jannis Kurtz, S. Ilker Birbil,
- Abstract summary: We introduce Coherent Local Explanations for Mathematical Optimization (CLEMO)
CLEMO provides explanations for multiple components of optimization models, the objective value and decision variables, which are coherent with the underlying model structure.
Our sampling-based procedure can provide explanations for the behavior of exact and exact solution algorithms.
- Score: 0.0
- License:
- Abstract: The surge of explainable artificial intelligence methods seeks to enhance transparency and explainability in machine learning models. At the same time, there is a growing demand for explaining decisions taken through complex algorithms used in mathematical optimization. However, current explanation methods do not take into account the structure of the underlying optimization problem, leading to unreliable outcomes. In response to this need, we introduce Coherent Local Explanations for Mathematical Optimization (CLEMO). CLEMO provides explanations for multiple components of optimization models, the objective value and decision variables, which are coherent with the underlying model structure. Our sampling-based procedure can provide explanations for the behavior of exact and heuristic solution algorithms. The effectiveness of CLEMO is illustrated by experiments for the shortest path problem, the knapsack problem, and the vehicle routing problem.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Mining Potentially Explanatory Patterns via Partial Solutions [39.58317527488534]
We present an algorithm that assembles a collection of Partial Solutions chosen to strike a balance between high fitness, simplicity and atomicity.
Experiments with standard benchmarks show that the proposed algorithm is able to find Partial Solutions which improve explainability at reasonable computational cost without affecting search performance.
arXiv Detail & Related papers (2024-04-05T20:12:02Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - DynamoRep: Trajectory-Based Population Dynamics for Classification of
Black-box Optimization Problems [0.755972004983746]
We propose a feature extraction method that describes the trajectories of optimization algorithms using simple statistics.
We demonstrate that the proposed DynamoRep features capture enough information to identify the problem class on which the optimization algorithm is running.
arXiv Detail & Related papers (2023-06-08T06:57:07Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
We consider the inverse problem where we use prior decision data to uncover the underlying decision-making process.
This statistical learning problem is referred to as data-driven inverse optimization.
We propose an efficient block coordinate descent-based algorithm to solve large problem instances.
arXiv Detail & Related papers (2022-10-27T12:52:56Z) - Efficient and Modular Implicit Differentiation [68.74748174316989]
We propose a unified, efficient and modular approach for implicit differentiation of optimization problems.
We show that seemingly simple principles allow to recover many recently proposed implicit differentiation methods and create new ones easily.
arXiv Detail & Related papers (2021-05-31T17:45:58Z) - Joint Continuous and Discrete Model Selection via Submodularity [1.332560004325655]
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem.
In many scenarios, however, numerically meaningful structure is specified in some discrete space leading to difficult non optimization problems.
We show how simple continuous or discrete constraints can also be handled for certain problem classes, motivated by robust optimization.
arXiv Detail & Related papers (2021-02-17T21:14:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.