Strongly Interacting Two-component Coupled Bose Gas in Optical Lattices
- URL: http://arxiv.org/abs/2106.00179v3
- Date: Tue, 30 Nov 2021 00:38:51 GMT
- Title: Strongly Interacting Two-component Coupled Bose Gas in Optical Lattices
- Authors: Sagarika Basak and Han Pu
- Abstract summary: Coupling of the components in the Bose gas leads to substantial change in the previously observed spin phases.
The system exhibiting ferromagnetic and non-ferromagnetic spin phases for on-site intra-component interaction switches from first-order to second-order phase transition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-component coupled Bose gas in a 1D optical lattice is examined. In
addition to the postulated Mott insulator and superfluid phases, multiple
bosonic components manifest spin degrees of freedom. Coupling of the components
in the Bose gas leads to substantial change in the previously observed spin
phases, giving rise to new effective spin Hamiltonian and unraveling remarkable
spin correlations. The system exhibiting ferromagnetic and non-ferromagnetic
spin phases for on-site intra-component interaction stronger than
inter-component interaction switches from first-order to second-order phase
transition between the spin phases upon introduction of coupling, on which is
dependent the transition width. For comparable on-site inter- and intra-
component interaction, with coupling, instead of one, two spin phases emerge
with a second-order phase transition. Exact diagonalization and Variational
Monte Carlo (VMC) with stochastic minimization on Entangled Plaquette State
(EPS) bestow a unique and enhanced perspective into the system beyond the scope
of a mean-field treatment.
Related papers
- Quantum Phase Transitions in a Generalized Dicke Model [2.723809629055624]
We investigate a generalized Dicke model by introducing two interacting spin ensembles coupled with a single-mode bosonic field.
Ferromagnetic spin-spin interaction can significantly reduce the required spin-boson coupling strength to observe the superradiant phase.
To examine higher-order quantum effects beyond the mean-field contribution, we utilize the Holstein-Primakoff transformation.
arXiv Detail & Related papers (2023-10-29T11:00:56Z) - Phases, instabilities and excitations in a two-component lattice model
with photon-mediated interactions [0.12233362977312942]
We study a two-component spin Bose-Hubbard system with cavity-mediated interactions.
The interplay of different energy scales yields a rich phase diagram with superfluid and insulating phases.
The studied lattice model can be readily realized in cold-atom experiments with optical cavities.
arXiv Detail & Related papers (2022-10-20T14:45:01Z) - Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders [50.591267188664666]
We investigate the phase diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg.
For weak interactions, Abelian bosonization predicts a spin density wave and a fully gapless Luttinger liquid phase.
The competition with the zigzag interaction generates a charge density wave, a 'polarized holonic' phase, and a crystalline phase at the filling 2/5.
arXiv Detail & Related papers (2022-07-01T12:49:04Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Lifshitz phase transitions in one-dimensional Gamma model [0.0]
We study quantum phase transitions and magnetic properties of a one-dimensional spin-1/2 Gamma model.
The results indicate that the Gamma model can act as an exactly solvable model to describe Lifshitz phase transitions in correlated electron systems.
arXiv Detail & Related papers (2020-09-17T15:46:36Z) - Many-Body Phases of a Planar Bose-Einstein Condensate with
Cavity-Induced Spin-Orbit Coupling [0.0]
We explore the many-body phases of a two-dimensional Bose-Einstein condensate with cavity-mediated spin-orbit coupling.
By the help of two transverse non-interfering, counterpropagating pump lasers and a single standing-wave cavity mode, two degenerate Zeeman sub-levels of the quantum gas are Raman coupled in a double-$Lambda$-configuration.
We identify three quantum phases with distinct atomic and photonic properties: the normal homogeneous'' phase, the superradiant spin-helix'' phase, and the superradiant
arXiv Detail & Related papers (2020-09-14T14:31:47Z) - Many-body effects on second-order phase transitions in spinor
Bose-Einstein condensates and breathing dynamics [0.0]
We unravel the correlation effects of the second-order quantum phase transitions emerging on the ground state of a harmonically trapped spin-1 Bose gas.
It is found that the boundaries of the associated magnetic phases are altered in the presence of interparticle correlations for both ferromagnetic and anti-ferromagnetic spin-spin interactions.
We demonstrate that for an initial broken-axisymmetry phase an enhanced spin-flip dynamics takes place which can be tuned either via the linear Zeeman term or the quench amplitude.
arXiv Detail & Related papers (2020-04-17T10:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.