Fair-Net: A Network Architecture For Reducing Performance Disparity
Between Identifiable Sub-Populations
- URL: http://arxiv.org/abs/2106.00720v1
- Date: Tue, 1 Jun 2021 18:26:08 GMT
- Title: Fair-Net: A Network Architecture For Reducing Performance Disparity
Between Identifiable Sub-Populations
- Authors: Arghya Datta, S. Joshua Swamidass
- Abstract summary: We introduce Fair-Net, a multitask neural network architecture that improves both classification accuracy and probability calibration across identifiable sub-populations.
Empirical studies with three real world benchmark datasets demonstrate that Fair-Net improves classification and calibration performance.
- Score: 0.522145960878624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real world datasets, particular groups are under-represented, much rarer
than others, and machine learning classifiers will often preform worse on
under-represented populations. This problem is aggravated across many domains
where datasets are class imbalanced, with a minority class far rarer than the
majority class. Naive approaches to handle under-representation and class
imbalance include training sub-population specific classifiers that handle
class imbalance or training a global classifier that overlooks sub-population
disparities and aims to achieve high overall accuracy by handling class
imbalance. In this study, we find that these approaches are vulnerable in class
imbalanced datasets with minority sub-populations. We introduced Fair-Net, a
branched multitask neural network architecture that improves both
classification accuracy and probability calibration across identifiable
sub-populations in class imbalanced datasets. Fair-Nets is a straightforward
extension to the output layer and error function of a network, so can be
incorporated in far more complex architectures. Empirical studies with three
real world benchmark datasets demonstrate that Fair-Net improves classification
and calibration performance, substantially reducing performance disparity
between gender and racial sub-populations.
Related papers
- Exploring Vacant Classes in Label-Skewed Federated Learning [113.65301899666645]
Label skews, characterized by disparities in local label distribution across clients, pose a significant challenge in federated learning.
This paper introduces FedVLS, a novel approach to label-skewed federated learning that integrates vacant-class distillation and logit suppression simultaneously.
arXiv Detail & Related papers (2024-01-04T16:06:31Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Throwing Away Data Improves Worst-Class Error in Imbalanced
Classification [36.91428748713018]
Class imbalances pervade classification problems, yet their treatment differs in theory and practice.
We take on the challenge of developing learning theory able to describe the worst-class error of classifiers over linearly-separable data.
arXiv Detail & Related papers (2022-05-23T23:43:18Z) - Imbalanced Classification via Explicit Gradient Learning From Augmented
Data [0.0]
We propose a novel deep meta-learning technique to augment a given imbalanced dataset with new minority instances.
The advantage of the proposed method is demonstrated on synthetic and real-world datasets with various imbalance ratios.
arXiv Detail & Related papers (2022-02-21T22:16:50Z) - Blackbox Post-Processing for Multiclass Fairness [1.5305403478254664]
We consider modifying the predictions of a blackbox machine learning classifier in order to achieve fairness in a multiclass setting.
We explore when our approach produces both fair and accurate predictions through systematic synthetic experiments.
We find that overall, our approach produces minor drops in accuracy and enforces fairness when the number of individuals in the dataset is high.
arXiv Detail & Related papers (2022-01-12T13:21:20Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
Neural networks trained on real-world datasets with long-tailed label distributions are biased towards frequent classes and perform poorly on infrequent classes.
We propose a method, Partial Label Masking (PLM), which utilizes this ratio during training.
Our method achieves strong performance when compared to existing methods on both multi-label (MultiMNIST and MSCOCO) and single-label (imbalanced CIFAR-10 and CIFAR-100) image classification datasets.
arXiv Detail & Related papers (2021-05-22T18:07:56Z) - Analyzing Overfitting under Class Imbalance in Neural Networks for Image
Segmentation [19.259574003403998]
In image segmentation neural networks may overfit to the foreground samples from small structures.
In this study, we provide new insights on the problem of overfitting under class imbalance by inspecting the network behavior.
arXiv Detail & Related papers (2021-02-20T14:57:58Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
We propose an ensemble of class-balanced experts that combines the strength of diverse classifiers.
Our ensemble of class-balanced experts reaches results close to state-of-the-art and an extended ensemble establishes a new state-of-the-art on two benchmarks for long-tailed recognition.
arXiv Detail & Related papers (2020-04-07T20:57:44Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
In most real-world scenarios, labeled training datasets are highly class-imbalanced, where deep neural networks suffer from generalizing to a balanced testing criterion.
In this paper, we explore a novel yet simple way to alleviate this issue by augmenting less-frequent classes via translating samples from more-frequent classes.
Our experimental results on a variety of class-imbalanced datasets show that the proposed method improves the generalization on minority classes significantly compared to other existing re-sampling or re-weighting methods.
arXiv Detail & Related papers (2020-04-01T13:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.