Connectivity constrains quantum codes
- URL: http://arxiv.org/abs/2106.00765v4
- Date: Fri, 29 Apr 2022 15:15:02 GMT
- Title: Connectivity constrains quantum codes
- Authors: Nou\'edyn Baspin, Anirudh Krishna
- Abstract summary: We study the limitations of quantum LDPC codes associated with local graphs in $D$-dimensional hyperbolic space.
We find that unless the connectivity graph contains an expander, the code is severely limited.
As an application, we present novel bounds on quantum LDPC codes associated with local graphs in $D$-dimensional hyperbolic space.
- Score: 0.06091702876917279
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum low-density parity-check (LDPC) codes are an important class of
quantum error correcting codes. In such codes, each qubit only affects a
constant number of syndrome bits, and each syndrome bit only relies on some
constant number of qubits. Constructing quantum LDPC codes is challenging. It
is an open problem to understand if there exist good quantum LDPC codes, i.e.
with constant rate and relative distance. Furthermore, techniques to perform
fault-tolerant gates are poorly understood. We present a unified way to address
these problems. Our main results are a) a bound on the distance, b) a bound on
the code dimension and c) limitations on certain fault-tolerant gates that can
be applied to quantum LDPC codes. All three of these bounds are cast as a
function of the graph separator of the connectivity graph representation of the
quantum code. We find that unless the connectivity graph contains an expander,
the code is severely limited. This implies a necessary, but not sufficient,
condition to construct good codes. This is the first bound that studies the
limitations of quantum LDPC codes that does not rely on locality. As an
application, we present novel bounds on quantum LDPC codes associated with
local graphs in $D$-dimensional hyperbolic space.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Many-hypercube codes: High-rate quantum error-correcting codes for high-performance fault-tolerant quantum computing [0.0]
We propose high-rate small-size quantum error-detecting codes as a new family of high-rate quantum codes.
Their simple structure allows for a geometrical interpretation using hypercubes corresponding to logical qubits.
We achieve high error thresholds even in a circuit-level noise model.
arXiv Detail & Related papers (2024-03-24T07:46:26Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Quaternary Neural Belief Propagation Decoding of Quantum LDPC Codes with
Overcomplete Check Matrices [45.997444794696676]
Quantum low-density parity-check (QLDPC) codes are promising candidates for error correction in quantum computers.
One of the major challenges in implementing QLDPC codes in quantum computers is the lack of a universal decoder.
We first propose to decode QLDPC codes with a belief propagation (BP) decoder operating on overcomplete check matrices.
We extend the neural BP (NBP) decoder, which was originally studied for suboptimal binary BP decoding of QLPDC codes, to quaternary BP decoders.
arXiv Detail & Related papers (2023-08-16T08:24:06Z) - Improved rate-distance trade-offs for quantum codes with restricted
connectivity [34.95121779484252]
We study how the connectivity graph associated with a quantum code constrains the code parameters.
We establish a tighter dimension-distance trade-off as a function of the size of separators in the connectivity graph.
arXiv Detail & Related papers (2023-07-06T20:38:34Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Toward a Union-Find decoder for quantum LDPC codes [0.0]
We propose a generalization of the Union-Find decoder as adecoder for quantum LDPC codes.
We prove that this decoder corrects all errors with weight up to Analpha for some A, alpha > 0 for different classes of quantum LDPC codes.
arXiv Detail & Related papers (2021-03-14T21:55:48Z) - Quantum Low-Density Parity-Check Codes [9.13755431537592]
We discuss a particular class of quantum codes called low-density parity-check (LDPC) quantum codes.
We introduce the zoo of LDPC quantum codes and discuss their potential for making quantum computers robust against noise.
arXiv Detail & Related papers (2021-03-10T19:19:37Z) - Building a fault-tolerant quantum computer using concatenated cat codes [44.03171880260564]
We present a proposed fault-tolerant quantum computer based on cat codes with outer quantum error-correcting codes.
We numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code.
We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer.
arXiv Detail & Related papers (2020-12-07T23:22:40Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.