Growing Sparse Quantum Codes from a Seed
- URL: http://arxiv.org/abs/2507.13496v1
- Date: Thu, 17 Jul 2025 19:05:52 GMT
- Title: Growing Sparse Quantum Codes from a Seed
- Authors: ChunJun Cao, Brad Lackey,
- Abstract summary: We show that by conjoining only quantum repetition codes, one can construct quantum LDPC codes.<n>We also show that the conjoining of even just two-qubit quantum bit-flip and phase-flip repetition codes is quite powerful as they can create any CSS code.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is generally unclear whether smaller codes can be "concatenated" to systematically create quantum LDPC codes or their sparse subsystem code cousins where the degree of the Tanner graph remains bounded while increasing the code distance. In this work, we use a slight generalization of concatenation called conjoining introduced by the quantum lego formalism. We show that by conjoining only quantum repetition codes, one can construct quantum LDPC codes. More generally, we provide an efficient iterative algorithm for constructing sparse subsystem codes with a distance guarantee that asymptotically saturates $kd^2=O(n)$ in the worst case. Furthermore, we show that the conjoining of even just two-qubit quantum bit-flip and phase-flip repetition codes is quite powerful as they can create any CSS code. Therefore, more creative combinations of these basic code blocks will be sufficient for generating good quantum codes, including good quantum LDPC codes.
Related papers
- Decoding Quasi-Cyclic Quantum LDPC Codes [23.22566380210149]
Quantum low-density parity-check (qLDPC) codes are an important component in the quest for fault tolerance.
Recent progress on qLDPC codes has led to constructions which are quantumally good, and which admit linear-time decoders to correct errors affecting a constant fraction of codeword qubits.
In practice, the surface/toric codes, which are the product of two repetition codes, are still often the qLDPC codes of choice.
arXiv Detail & Related papers (2024-11-07T06:25:27Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - Many-hypercube codes: High-rate quantum error-correcting codes for high-performance fault-tolerant quantum computing [0.0]
We propose high-rate small-size quantum error-detecting codes as a new family of high-rate quantum codes.
Their simple structure allows for a geometrical interpretation using hypercubes corresponding to logical qubits.
We achieve high error thresholds even in a circuit-level noise model.
arXiv Detail & Related papers (2024-03-24T07:46:26Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [47.52324012811181]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.<n>We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Quantum spherical codes [55.33545082776197]
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes.
We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions.
arXiv Detail & Related papers (2023-02-22T19:00:11Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Quantum Error Correction via Noise Guessing Decoding [0.0]
Quantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation.
This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime.
arXiv Detail & Related papers (2022-08-04T16:18:20Z) - New Binary Quantum Codes Constructed from Quasi-Cyclic Codes [6.718184400443239]
It is well known that quantum codes can be constructed by means of classical symplectic dual-containing codes.
This paper considers a family of two-generator quasi-cyclic codes and derives sufficient conditions for these codes to be symplectic dual-containing.
As an application, we construct 8 binary quantum codes that exceed the best-known results.
arXiv Detail & Related papers (2021-12-14T03:22:16Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.