Many-hypercube codes: High-rate quantum error-correcting codes for high-performance fault-tolerant quantum computing
- URL: http://arxiv.org/abs/2403.16054v3
- Date: Wed, 28 Aug 2024 09:05:23 GMT
- Title: Many-hypercube codes: High-rate quantum error-correcting codes for high-performance fault-tolerant quantum computing
- Authors: Hayato Goto,
- Abstract summary: We propose high-rate small-size quantum error-detecting codes as a new family of high-rate quantum codes.
Their simple structure allows for a geometrical interpretation using hypercubes corresponding to logical qubits.
We achieve high error thresholds even in a circuit-level noise model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Standard approaches to quantum error correction for fault-tolerant quantum computing are based on encoding a single logical qubit into many physical ones, resulting in asymptotically zero encoding rates and therefore huge resource overheads. To overcome this issue, high-rate quantum codes, such as quantum low-density parity-check codes, have been studied over the past decade. In this case, however, it is difficult to perform logical gates in parallel while maintaining low overheads. Here we propose concatenated high-rate small-size quantum error-detecting codes as a new family of high-rate quantum codes. Their simple structure allows for a geometrical interpretation using hypercubes corresponding to logical qubits. We thus call them many-hypercube codes. They can realize both high rates, e.g., 30% (64 logical qubits are encoded into 216 physical ones), and parallelizability of logical gates. Developing dedicated decoder and encoders, we achieve high error thresholds even in a circuit-level noise model. Thus, the many-hypercube codes will pave the way to high-performance fault-tolerant quantum computing.
Related papers
- Hardware-Efficient Fault Tolerant Quantum Computing with Bosonic Grid States in Superconducting Circuits [0.0]
This perspective manuscript describes how bosonic codes, particularly grid state encodings, offer a pathway to scalable fault-tolerant quantum computing.
By leveraging the large Hilbert space of bosonic modes, quantum error correction can operate at the single physical unit level.
We argue that it offers the shortest path to achieving fault tolerance in gate-based quantum computing processors with a MHz logical clock rate.
arXiv Detail & Related papers (2024-09-09T17:20:06Z) - Quantum memory based on concatenating surface codes and quantum Hamming codes [0.0]
We study the concatenation of surface codes with quantum Hamming codes as a quantum memory.
A high error threshold is achieved, which can in principle be pushed up to the threshold of the surface code.
The advantage in suppressing errors starts to show for a quantum memory of intermediate scale.
arXiv Detail & Related papers (2024-07-23T04:47:14Z) - Implementing fault-tolerant non-Clifford gates using the [[8,3,2]] color
code [0.0]
We observe improved performance for encoded circuits implementing non-Clifford gates.
Our results illustrate the potential of using codes with quantum gates to implement non-trivial algorithms.
arXiv Detail & Related papers (2023-09-15T18:00:02Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Connectivity constrains quantum codes [0.06091702876917279]
We study the limitations of quantum LDPC codes associated with local graphs in $D$-dimensional hyperbolic space.
We find that unless the connectivity graph contains an expander, the code is severely limited.
As an application, we present novel bounds on quantum LDPC codes associated with local graphs in $D$-dimensional hyperbolic space.
arXiv Detail & Related papers (2021-06-01T20:03:16Z) - Theory of quasi-exact fault-tolerant quantum computing and
valence-bond-solid codes [3.6192409729339223]
We develop the theory of quasi-exact fault-tolerant quantum computation, which uses qubits encoded into quasi-exact quantum error-correction codes ("quasi codes")
The model of QEQ lies in between the two well-known ones: the usual noisy quantum universality without error correction and the usual fault-tolerant quantum computation, but closer to the later.
arXiv Detail & Related papers (2021-05-31T08:17:30Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.