Optimizing CNN Architectures for Advanced Thoracic Disease Classification
- URL: http://arxiv.org/abs/2502.10614v1
- Date: Sat, 15 Feb 2025 00:27:37 GMT
- Title: Optimizing CNN Architectures for Advanced Thoracic Disease Classification
- Authors: Tejas Mirthipati,
- Abstract summary: We evaluate various CNN architectures to address challenges like dataset imbalance, variations in image quality, and hidden biases.
Our results highlight the potential of CNNs in medical imaging but emphasize that issues like unbalanced datasets and variations in image acquisition methods must be addressed for optimal model performance.
- Score: 0.0
- License:
- Abstract: Machine learning, particularly convolutional neural networks (CNNs), has shown promise in medical image analysis, especially for thoracic disease detection using chest X-ray images. In this study, we evaluate various CNN architectures, including binary classification, multi-label classification, and ResNet50 models, to address challenges like dataset imbalance, variations in image quality, and hidden biases. We introduce advanced preprocessing techniques such as principal component analysis (PCA) for image compression and propose a novel class-weighted loss function to mitigate imbalance issues. Our results highlight the potential of CNNs in medical imaging but emphasize that issues like unbalanced datasets and variations in image acquisition methods must be addressed for optimal model performance.
Related papers
- Improving Sickle Cell Disease Classification: A Fusion of Conventional Classifiers, Segmented Images, and Convolutional Neural Networks [0.31457219084519006]
We propose a novel approach combining conventional classifiers, segmented images, and CNNs for the automated classification of sickle cell disease.
Our results demonstrate that using segmented images and CNN features with an SVM achieves an accuracy of 96.80%.
arXiv Detail & Related papers (2024-12-23T20:42:15Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - Computer-Aided Cytology Diagnosis in Animals: CNN-Based Image Quality
Assessment for Accurate Disease Classification [0.1420200946324199]
This paper focuses on image quality assessment (IQA) using Convolutional Neural Networks (CNNs)
The system's building blocks are tailored to seamlessly integrate IQA, ensuring reliable performance in disease classification.
arXiv Detail & Related papers (2023-08-11T10:09:08Z) - Class Attention to Regions of Lesion for Imbalanced Medical Image
Recognition [59.28732531600606]
We propose a framework named textbfClass textbfAttention to textbfREgions of the lesion (CARE) to handle data imbalance issues.
The CARE framework needs bounding boxes to represent the lesion regions of rare diseases.
Results show that the CARE variants with automated bounding box generation are comparable to the original CARE framework.
arXiv Detail & Related papers (2023-07-19T15:19:02Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
The most common type of primary malignant bone tumor is osteosarcoma.
CNNs can significantly decrease surgeon's workload and make a better prognosis of patient conditions.
CNNs need to be trained on a large amount of data in order to achieve a more trustworthy performance.
arXiv Detail & Related papers (2020-11-02T18:16:17Z) - Comparison of Convolutional neural network training parameters for
detecting Alzheimers disease and effect on visualization [0.0]
Convolutional neural networks (CNN) have become a powerful tool for detecting patterns in image data.
Despite the high accuracy obtained from CNN models for MRI data so far, almost no papers provided information on the features or image regions driving this accuracy.
arXiv Detail & Related papers (2020-08-18T15:21:50Z) - Improving Calibration and Out-of-Distribution Detection in Medical Image
Segmentation with Convolutional Neural Networks [8.219843232619551]
Convolutional Neural Networks (CNNs) have shown to be powerful medical image segmentation models.
We advocate for multi-task learning, i.e., training a single model on several different datasets.
We show that not only a single CNN learns to automatically recognize the context and accurately segment the organ of interest in each context, but also that such a joint model often has more accurate and better-calibrated predictions.
arXiv Detail & Related papers (2020-04-12T23:42:51Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.