論文の概要: Contrastive ACE: Domain Generalization Through Alignment of Causal
Mechanisms
- arxiv url: http://arxiv.org/abs/2106.00925v1
- Date: Wed, 2 Jun 2021 04:01:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 14:42:34.466429
- Title: Contrastive ACE: Domain Generalization Through Alignment of Causal
Mechanisms
- Title(参考訳): 対照的なACE: 因果メカニズムのアライメントによるドメインの一般化
- Authors: Yunqi Wang, Furui Liu, Zhitang Chen, Qing Lian, Shoubo Hu, Jianye Hao,
Yik-Chung Wu
- Abstract要約: ドメインの一般化は、異なる分布にまたがる知識不変性を学ぶことを目的としている。
ラベルに対する特徴の因果効果の平均的因果効果の因果不変性を考察する。
- 参考スコア(独自算出の注目度): 34.99779761100095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization aims to learn knowledge invariant across different
distributions while semantically meaningful for downstream tasks from multiple
source domains, to improve the model's generalization ability on unseen target
domains. The fundamental objective is to understand the underlying "invariance"
behind these observational distributions and such invariance has been shown to
have a close connection to causality. While many existing approaches make use
of the property that causal features are invariant across domains, we consider
the causal invariance of the average causal effect of the features to the
labels. This invariance regularizes our training approach in which
interventions are performed on features to enforce stability of the causal
prediction by the classifier across domains. Our work thus sheds some light on
the domain generalization problem by introducing invariance of the mechanisms
into the learning process. Experiments on several benchmark datasets
demonstrate the performance of the proposed method against SOTAs.
- Abstract(参考訳): ドメインの一般化は、複数のソースドメインから下流のタスクに意味的に意味を持ちながら、異なるディストリビューションにまたがる知識の不変性を学ぶことを目的としている。
基本的な目的は、これらの観測分布の背後にある「不変」を理解することであり、そのような不変性は因果関係に密接な関係があることが示されている。
既存の多くのアプローチでは、因果的特徴がドメイン間で不変であるという特性を利用するが、その特徴のラベルに対する平均因果的効果の因果的不変性を考慮する。
この不変性は、ドメイン間の分類器による因果予測の安定性を強制する特徴に対して介入を行う訓練アプローチを規則化する。
そこで本研究では,学習過程に機構の不変性を導入することで,領域の一般化問題に光を当てる。
いくつかのベンチマークデータセットの実験では,SOTAに対する提案手法の性能が示されている。
関連論文リスト
- Causal Representation-Based Domain Generalization on Gaze Estimation [10.283904882611463]
本稿では,迷路推定フレームワークを用いた因果表現に基づく領域一般化を提案する。
我々は、ドメイン不変の特徴を抽出するために、逆行訓練法と追加の罰則項を用いる。
これらのモジュールを活用することで、CauGEはニューラルネットワークが因果メカニズムの一般的な原則を満たす表現から学ぶことを保証します。
論文 参考訳(メタデータ) (2024-08-30T01:45:22Z) - Causality-inspired Latent Feature Augmentation for Single Domain Generalization [13.735443005394773]
単一ドメインの一般化(Single-DG)は、単一のトレーニングドメインのみを持つ一般化可能なモデルを開発し、他の未知のターゲットドメインでうまく機能させることを目的としている。
ドメイン・ハングリー構成の下で、ソース・ドメインのカバレッジを拡大し、異なる分布にまたがる固有の因果的特徴を見つける方法がモデルの一般化能力を高める鍵となる。
本稿では、因果学習と介入に基づく特徴レベルの変換のメタ知識を学習することで、単一DGの因果性に着想を得た潜在機能拡張手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T02:42:25Z) - Algorithmic Fairness Generalization under Covariate and Dependence Shifts Simultaneously [28.24666589680547]
公平かつ不変な分類器の学習を目的とした,単純かつ効果的な手法を提案する。
モデルを用いて様々な合成データドメインを拡張することにより、ソースドメインの公平かつ不変な分類器を学習する。
この分類器は未知の対象領域に一般化することができ、モデル予測と公平性の懸念の両方を維持できる。
論文 参考訳(メタデータ) (2023-11-23T05:52:00Z) - Multi-Domain Causal Representation Learning via Weak Distributional
Invariances [27.72497122405241]
因果表現学習は因果機械学習研究における行動の中心として現れてきた。
このような不変性を組み込んだオートエンコーダは、他の部分から異なる設定で安定なラテントの集合を確実に特定できることを示す。
論文 参考訳(メタデータ) (2023-10-04T14:41:41Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインから、目に見えないターゲットドメインをうまく一般化できるモデルを学ぶことを目的としている。
観測不能な共同創設者のバイアスを2段階学習で除去し,インストゥルメンタル変数駆動型DG法(IV-DG)を提案する。
第1段階では、あるドメインの入力特徴の条件分布を他のドメインの入力特徴の条件分布として学習する。
第2段階では,ラベルと学習条件分布の関係を推定する。
論文 参考訳(メタデータ) (2021-10-04T13:32:57Z) - Variational Disentanglement for Domain Generalization [68.85458536180437]
本稿では,変分拡散ネットワーク(VDN)という効果的なフレームワークを提供することにより,領域一般化の課題に取り組むことを提案する。
VDNは、ドメイン固有の機能とタスク固有の機能を切り離し、タスク固有のフィーチャは、見えないが関連するテストデータにより良い一般化が期待できる。
論文 参考訳(メタデータ) (2021-09-13T09:55:32Z) - Self-balanced Learning For Domain Generalization [64.99791119112503]
ドメインの一般化は、モデルが未知の統計を持つ対象のドメインに一般化できるように、マルチドメインのソースデータの予測モデルを学ぶことを目的としている。
既存のアプローチのほとんどは、ソースデータがドメインとクラスの両方の観点からバランスよく調整されているという前提の下で開発されている。
本稿では,多領域ソースデータの分布の違いによるバイアスを軽減するために,損失の重み付けを適応的に学習する自己均衡型領域一般化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-31T03:17:54Z) - Interventional Domain Adaptation [81.0692660794765]
ドメイン適応(DA)は、ソースドメインからターゲットドメインに学習した差別的特徴を転送することを目的としている。
標準的なドメイン不変学習は、素早い相関に悩まされ、ソース固有性を誤って転送する。
ドメイン固有部分とドメイン共有部分とを区別する反ファクト機能を作成します。
論文 参考訳(メタデータ) (2020-11-07T09:53:13Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Few-shot Domain Adaptation by Causal Mechanism Transfer [107.08605582020866]
我々は,少数のラベル付き対象ドメインデータと多数のラベル付きソースドメインデータしか利用できないレグレッション問題に対して,数ショットの教師付きドメイン適応(DA)について検討する。
現在のDA法の多くは、パラメータ化された分布シフトまたは明らかな分布類似性に基づく転送仮定に基づいている。
本稿では,データ生成機構がドメイン間で不変であるメタ分散シナリオであるメカニズム転送を提案する。
論文 参考訳(メタデータ) (2020-02-10T02:16:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。