論文の概要: A Span Extraction Approach for Information Extraction on Visually-Rich
Documents
- arxiv url: http://arxiv.org/abs/2106.00978v1
- Date: Wed, 2 Jun 2021 06:50:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 14:30:04.487581
- Title: A Span Extraction Approach for Information Extraction on Visually-Rich
Documents
- Title(参考訳): 視覚リッチ文書情報抽出のためのスパン抽出手法
- Authors: Tuan-Anh D. Nguyen, Hieu M. Vu, Nguyen Hong Son, Minh-Tien Nguyen
- Abstract要約: 視覚豊かな文書(VRD)を事前学習する言語モデルの能力向上のための新しいアプローチを提案する。
まず、クエリベースの新しいIEモデルを導入し、一般的に使用されるシーケンスラベリングアプローチの代わりにスパン抽出の定式化を採用する。
また、文書内の意味的エンティティ間の関係をモデル化することに焦点を当てた新しいトレーニングタスクを提案する。
- 参考スコア(独自算出の注目度): 2.3131309703965135
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Information extraction (IE) from visually-rich documents (VRDs) has achieved
SOTA performance recently thanks to the adaptation of Transformer-based
language models, which demonstrates great potential of pre-training methods. In
this paper, we present a new approach to improve the capability of language
model pre-training on VRDs. Firstly, we introduce a new IE model that is
query-based and employs the span extraction formulation instead of the commonly
used sequence labelling approach. Secondly, to further extend the span
extraction formulation, we propose a new training task which focuses on
modelling the relationships between semantic entities within a document. This
task enables the spans to be extracted recursively and can be used as both a
pre-training objective as well as an IE downstream task. Evaluation on various
datasets of popular business documents (invoices, receipts) shows that our
proposed method can improve the performance of existing models significantly,
while providing a mechanism to accumulate model knowledge from multiple
downstream IE tasks.
- Abstract(参考訳): 近年,トランスフォーマーに基づく言語モデルの適応により,情報抽出(IE)がSOTAの性能を向上し,事前学習手法の可能性を実証している。
本稿では,VRDにおける言語モデル事前学習の能力向上のための新しいアプローチを提案する。
まず、クエリベースの新しいIEモデルを導入し、一般的に使用されるシーケンスラベリングアプローチの代わりにスパン抽出の定式化を採用する。
次に,スパン抽出形式をさらに拡張するために,文書内の意味エンティティ間の関係をモデル化することに焦点を当てた新しい学習タスクを提案する。
このタスクはスパンを再帰的に抽出することができ、トレーニング済みの目的とIEダウンストリームタスクの両方として使用できる。
一般的なビジネス文書(請求書,領収書)の各種データセットの評価から,提案手法は,複数のダウンストリームIEタスクからモデル知識を蓄積する機構を提供しながら,既存のモデルの性能を大幅に向上させることができることを示す。
関連論文リスト
- Leveraging Large Language Models for Web Scraping [0.0]
本研究では,言語生成用に設計したRAGモデルに対して,汎用的な高精度なデータスクレイピング手法について検討する。
よりモジュール的で解釈可能な方法で知識をキャプチャするために、私たちは、潜在的な知識検索機能を備えた事前訓練された言語モデルを使用します。
論文 参考訳(メタデータ) (2024-06-12T14:15:15Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - Document-Level In-Context Few-Shot Relation Extraction via Pre-Trained Language Models [29.94694305204144]
本稿では,文書レベルのインコンテクスト・イン・ショット関係抽出のための新しいフレームワークを提案する。
ドキュメントレベルの関係抽出用データセットとして最大であるDocREDを用いて,本フレームワークの評価を行った。
論文 参考訳(メタデータ) (2023-10-17T09:10:27Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - ERNIE-Layout: Layout Knowledge Enhanced Pre-training for Visually-rich
Document Understanding [52.3895498789521]
レイアウト知識を向上した新しい文書事前学習ソリューションであるERNIEを提案する。
まず、直列化段階で入力シーケンスを並べ替え、相関的な事前学習タスクを示し、順序予測を行い、文書の適切な読み順序を学習する。
実験の結果、ERNIEは様々な下流タスクにおいて優れた性能を示し、キー情報に新たな最先端設定、文書質問応答を実現している。
論文 参考訳(メタデータ) (2022-10-12T12:59:24Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
ニューラルネットワークに基づく抽象的多文書要約(MDS)モデルを開発した。
依存関係情報を言語誘導型注意機構に処理する。
言語信号の助けを借りて、文レベルの関係を正しく捉えることができる。
論文 参考訳(メタデータ) (2021-09-23T08:13:35Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。