論文の概要: Leveraging Large Language Models for Web Scraping
- arxiv url: http://arxiv.org/abs/2406.08246v1
- Date: Wed, 12 Jun 2024 14:15:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 16:36:08.316677
- Title: Leveraging Large Language Models for Web Scraping
- Title(参考訳): Webストラップのための大規模言語モデルの活用
- Authors: Aman Ahluwalia, Suhrud Wani,
- Abstract要約: 本研究では,言語生成用に設計したRAGモデルに対して,汎用的な高精度なデータスクレイピング手法について検討する。
よりモジュール的で解釈可能な方法で知識をキャプチャするために、私たちは、潜在的な知識検索機能を備えた事前訓練された言語モデルを使用します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) demonstrate remarkable capabilities in replicating human tasks and boosting productivity. However, their direct application for data extraction presents limitations due to a prioritisation of fluency over factual accuracy and a restricted ability to manipulate specific information. Therefore to overcome these limitations, this research leverages the knowledge representation power of pre-trained LLMs and the targeted information access enabled by RAG models, this research investigates a general-purpose accurate data scraping recipe for RAG models designed for language generation. To capture knowledge in a more modular and interpretable way, we use pre trained language models with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus. We utilised RAG model architecture and did an in-depth analysis of their capabilities under three tasks: (i) Semantic Classification of HTML elements, (ii) Chunking HTML text for effective understanding, and (iii) comparing results from different LLMs and ranking algorithms. While previous work has developed dedicated architectures and training procedures for HTML understanding and extraction, we show that LLMs pre-trained on standard natural language with an addition of effective chunking, searching and ranking algorithms, can prove to be efficient data scraping tool to extract complex data from unstructured text. Future research directions include addressing the challenges of provenance tracking and dynamic knowledge updates within the proposed RAG-based data extraction framework. By overcoming these limitations, this approach holds the potential to revolutionise data extraction from vast repositories of textual information.
- Abstract(参考訳): 大きな言語モデル(LLM)は、人間のタスクを複製し、生産性を向上する素晴らしい能力を示す。
しかし,データ抽出への直接的応用は,事実の正確性よりも流速が優先され,特定の情報を操作する能力が制限されたことによる限界を呈している。
そこで本研究では,これらの制約を克服するために,事前学習したLLMの知識表現能力と,RAGモデルによって実現されたターゲット情報アクセスを活用し,言語生成用に設計されたRAGモデルの汎用的正確なデータスクレイピングレシピについて検討する。
よりモジュール的で解釈可能な方法で知識をキャプチャするために、我々は、潜在知識検索器を備えた事前訓練された言語モデルを使用し、大きなコーパスからドキュメントを検索し、出席できるようにする。
我々はRAGモデルアーキテクチャを活用し、3つのタスクでそれらの機能について詳細な分析を行った。
(i)HTML要素のセマンティック分類
(ii)効果的な理解のためのHTMLテキストのチャンク
(iii)異なるLLMとランキングアルゴリズムの結果を比較した。
従来の研究はHTMLの理解と抽出のための専用アーキテクチャと訓練手順を開発してきたが、実効的なチャンキング、検索、ランキングアルゴリズムを付加した標準自然言語で事前訓練されたLLMは、非構造化テキストから複雑なデータを抽出する効率的なデータスクレイピングツールであることが証明された。
今後の研究の方向性には、提案されたRAGベースのデータ抽出フレームワークにおけるプロファイランストラッキングと動的知識更新の課題に対処することが含まれる。
これらの制限を克服することで、このアプローチは膨大なテキスト情報のリポジトリからのデータ抽出に革命をもたらす可能性を秘めている。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Improving Pinterest Search Relevance Using Large Language Models [15.24121687428178]
我々はLarge Language Models (LLM) を検索関連モデルに統合する。
提案手法では,生成的視覚言語モデルから抽出したキャプションを含むコンテンツ表現とともに検索クエリを使用する。
LLMをベースとしたモデルからリアルタイム可観測モデルアーキテクチャと特徴を抽出する。
論文 参考訳(メタデータ) (2024-10-22T16:29:33Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - A Universal Prompting Strategy for Extracting Process Model Information from Natural Language Text using Large Language Models [0.8899670429041453]
生成型大規模言語モデル(LLM)は,広範囲なデータを必要とすることなく,非常に高品質なNLPタスクを解くことができることを示す。
新たなプロンプト戦略に基づいて,LLMが最先端の機械学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-26T06:39:35Z) - Enhancing Knowledge Retrieval with In-Context Learning and Semantic Search through Generative AI [3.9773527114058855]
本稿では,大規模言語モデルの生成能力とベクトルデータベースの高速かつ正確な検索能力を組み合わせた新しい手法を提案する。
開発したGTR(Generative Text Retrieval)は,非構造化データと構造化データの両方に適用可能である。
改良されたモデルであるGenerative Tabular Text Retrieval (GTR-T) は、大規模データベースクエリの効率を実証した。
論文 参考訳(メタデータ) (2024-06-13T23:08:06Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
タブラルデータはしばしばテキストに隠され、特に医学的診断報告に使用される。
本稿では,TEMED-LLM と呼ばれるテキスト医療報告から構造化表状データを抽出する手法を提案する。
本手法は,医学診断における最先端のテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:12:28Z) - STAR: Boosting Low-Resource Information Extraction by Structure-to-Text
Data Generation with Large Language Models [56.27786433792638]
STARは大規模言語モデル(LLM)を利用してデータインスタンスを合成するデータ生成手法である。
我々は、初期データインスタンスを取得するための詳細なステップバイステップ命令を設計する。
実験の結果,STARが生成したデータは,低リソースイベント抽出および関係抽出タスクの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-05-24T12:15:19Z) - The Web Can Be Your Oyster for Improving Large Language Models [98.72358969495835]
大規模言語モデル(LLM)は、大量の世界の知識を符号化する。
我々はLLMを検索エンジンを用いて大規模ウェブで拡張することを検討する。
ウェブ上に拡張されたLLM UNIWEBを提案する。これは16の知識集約的なタスクに対して、統一されたテキスト・テキスト・フォーマットで訓練される。
論文 参考訳(メタデータ) (2023-05-18T14:20:32Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。