論文の概要: A Novel Edge Detection Operator for Identifying Buildings in Augmented
Reality Applications
- arxiv url: http://arxiv.org/abs/2106.01055v1
- Date: Wed, 2 Jun 2021 10:06:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 04:16:34.237873
- Title: A Novel Edge Detection Operator for Identifying Buildings in Augmented
Reality Applications
- Title(参考訳): 拡張現実応用における建物識別のための新しいエッジ検出演算子
- Authors: Ciprian Orhei and Silviu Vert and Radu Vasiu
- Abstract要約: 本稿では, エッジ検出のための新しいフィルタ演算子を提案する。
提案フィルタは,我々の目的にとって重要な特徴である垂直・水平方向のエッジを見つけるために,より重みを与える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Augmented Reality is an environment-enhancing technology, widely applied in
many domains, such as tourism and culture. One of the major challenges in this
field is precise detection and extraction of building information through
Computer Vision techniques. Edge detection is one of the building blocks
operations for many feature extraction solutions in Computer Vision. AR systems
use edge detection for building extraction or for extraction of facade details
from buildings. In this paper, we propose a novel filter operator for edge
detection that aims to extract building contours or facade features better. The
proposed filter gives more weight for finding vertical and horizontal edges
that is an important feature for our aim.
- Abstract(参考訳): 拡張現実(Augmented Reality)は環境改善技術であり、観光や文化など多くの分野に広く応用されている。
この分野での大きな課題の1つは、コンピュータビジョン技術による正確な建物情報の検出と抽出である。
エッジ検出は、コンピュータビジョンにおける多くの特徴抽出ソリューションのビルディングブロック操作の1つである。
ARシステムは、建物の抽出や建物からのファサード詳細の抽出にエッジ検出を使用する。
本稿では,建築輪郭やファサードの特徴をよりよく抽出することを目的とした,エッジ検出のための新しいフィルタ演算子を提案する。
提案フィルタは,我々の目的にとって重要な垂直・水平方向のエッジを見つけるための重みを与える。
関連論文リスト
- SurANet: Surrounding-Aware Network for Concealed Object Detection via Highly-Efficient Interactive Contrastive Learning Strategy [55.570183323356964]
本稿では,隠蔽物体検出のための新しいSurrounding-Aware Network,すなわちSurANetを提案する。
周辺特徴の差分融合を用いて特徴写像のセマンティクスを強化し,隠蔽対象の強調を行う。
次に、周囲の特徴写像を対照的に学習することで隠蔽対象を識別するために、周囲のコントラストロスを適用した。
論文 参考訳(メタデータ) (2024-10-09T13:02:50Z) - Feature Aggregation Network for Building Extraction from High-resolution
Remote Sensing Images [1.7623838912231695]
高解像度衛星リモートセンシングデータ取得は、表面構造的特徴の詳細な抽出の可能性を明らかにした。
現在の手法は、表面特徴の局所化情報にのみ焦点をあてている。
本稿では,グローバル機能とローカル機能の両方を抽出する機能集約ネットワーク(FANet)を提案する。
論文 参考訳(メタデータ) (2023-09-12T07:31:51Z) - Deep Industrial Image Anomaly Detection: A Survey [85.44223757234671]
近年の深層学習の急速な発展は,産業用画像異常検出(IAD)のマイルストーンとなった
本稿では,ディープラーニングによる画像異常検出手法の総合的なレビューを行う。
画像異常検出のオープニング課題をいくつか取り上げる。
論文 参考訳(メタデータ) (2023-01-27T03:18:09Z) - Searching a High-Performance Feature Extractor for Text Recognition
Network [92.12492627169108]
優れた特徴抽出器を持つための原理を探求し,ドメイン固有の検索空間を設計する。
空間は巨大で複雑な構造であるため、既存のNASアルゴリズムを適用することはできない。
本研究では,空間内を効率的に探索する2段階のアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-27T03:49:04Z) - End-to-End Instance Edge Detection [29.650295133113183]
エッジ検出は長い間、コンピュータビジョンの分野で重要な問題であった。
従来の研究は、カテゴリ非依存またはカテゴリ対応エッジ検出を探索してきた。
本稿では,オブジェクトインスタンスのコンテキストにおけるエッジ検出について検討する。
論文 参考訳(メタデータ) (2022-04-06T15:32:21Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - Line-Circle-Square (LCS): A Multilayered Geometric Filter for Edge-Based
Detection [2.4054377316708964]
提案フィルタは,設定された各専門家に対して,過度に計算せずにシーンを判断するための高レベル情報を抽出するために,検出,追跡,学習を行う。
本実験は,実験と実世界の両方のシナリオにおいて,検出精度と資源使用量の観点から,提案フィルタの有効性を検証した。
論文 参考訳(メタデータ) (2020-08-21T05:28:12Z) - Building Robust Industrial Applicable Object Detection Models Using
Transfer Learning and Single Pass Deep Learning Architectures [1.1816942730023883]
我々は、オブジェクト検出のタスク専用の深層畳み込みニューラルネットワークが、産業指向のオブジェクト検出パイプラインをどのように改善するかを探求する。
地域提案や分類,確率推定をひとつの実行で統合したディープラーニングアーキテクチャを用いて,リアルタイムのパフォーマンス向上を目指す。
本稿では,これらのアルゴリズムを2つの産業関連アプリケーションに適用し,その1つはアイトラッキングデータにおけるプロモーションボードの検出と,もう1つは拡張現実広告のための倉庫製品のパッケージの検出と認識である。
論文 参考訳(メタデータ) (2020-07-09T09:50:45Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
本稿では,セグメント化された平面マスクを画像に検出されたエッジと整列するための後処理アルゴリズムを提案する。
これにより、立方体形状の物体に制限を加えながら、最先端のアプローチの精度を高めることができます。
論文 参考訳(メタデータ) (2020-03-28T18:51:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。