Detecting Bot-Generated Text by Characterizing Linguistic Accommodation
in Human-Bot Interactions
- URL: http://arxiv.org/abs/2106.01170v1
- Date: Wed, 2 Jun 2021 14:10:28 GMT
- Title: Detecting Bot-Generated Text by Characterizing Linguistic Accommodation
in Human-Bot Interactions
- Authors: Paras Bhatt and Anthony Rios
- Abstract summary: Language generation models' democratization makes it easier to generate human-like text at-scale for nefarious activities.
It is essential to understand how people interact with bots and develop methods to detect bot-generated text.
This paper shows that bot-generated text detection methods are more robust across datasets and models if we use information about how people respond to it.
- Score: 9.578008322407928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language generation models' democratization benefits many domains, from
answering health-related questions to enhancing education by providing
AI-driven tutoring services. However, language generation models'
democratization also makes it easier to generate human-like text at-scale for
nefarious activities, from spreading misinformation to targeting specific
groups with hate speech. Thus, it is essential to understand how people
interact with bots and develop methods to detect bot-generated text. This paper
shows that bot-generated text detection methods are more robust across datasets
and models if we use information about how people respond to it rather than
using the bot's text directly. We also analyze linguistic alignment, providing
insight into differences between human-human and human-bot conversations.
Related papers
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Distinguishing Chatbot from Human [1.1249583407496218]
We develop a new dataset consisting of more than 750,000 human-written paragraphs.
Based on this dataset, we apply Machine Learning (ML) techniques to determine the origin of text.
Our proposed solutions offer high classification accuracy and serve as useful tools for textual analysis.
arXiv Detail & Related papers (2024-08-03T13:18:04Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
We propose a novel framework, paraphrased text span detection (PTD)
PTD aims to identify paraphrased text spans within a text.
We construct a dedicated dataset, PASTED, for paraphrased text span detection.
arXiv Detail & Related papers (2024-05-21T11:22:27Z) - Spot the bot: Coarse-Grained Partition of Semantic Paths for Bots and
Humans [55.2480439325792]
This paper focuses on comparing structures of the coarse-grained partitions of semantic paths for human-written and bot-generated texts.
As the semantic structure may be different for different languages, we investigate Russian, English, German, and Vietnamese languages.
arXiv Detail & Related papers (2024-02-27T10:38:37Z) - Evaluating the Efficacy of Hybrid Deep Learning Models in Distinguishing
AI-Generated Text [0.0]
My research investigates the use of cutting-edge hybrid deep learning models to accurately differentiate between AI-generated text and human writing.
I applied a robust methodology, utilising a carefully selected dataset comprising AI and human texts from various sources, each tagged with instructions.
arXiv Detail & Related papers (2023-11-27T06:26:53Z) - Spot the Bot: Distinguishing Human-Written and Bot-Generated Texts Using
Clustering and Information Theory Techniques [0.0]
We propose a bot identification algorithm based on unsupervised learning techniques.
We find that the generated texts tend to be more chaotic while literary works are more complex.
We also demonstrate that the clustering of human texts results in fuzzier clusters in comparison to the more compact and well-separated clusters of bot-generated texts.
arXiv Detail & Related papers (2023-11-19T22:29:15Z) - Bot or Human? Detecting ChatGPT Imposters with A Single Question [29.231261118782925]
Large language models (LLMs) have recently demonstrated impressive capabilities in natural language understanding and generation.
There is a concern that they can be misused for malicious purposes, such as fraud or denial-of-service attacks.
We propose a framework named FLAIR, Finding Large Language Model Authenticity via a Single Inquiry and Response, to detect conversational bots in an online manner.
arXiv Detail & Related papers (2023-05-10T19:09:24Z) - Real or Fake Text?: Investigating Human Ability to Detect Boundaries
Between Human-Written and Machine-Generated Text [23.622347443796183]
We study a more realistic setting where text begins as human-written and transitions to being generated by state-of-the-art neural language models.
We show that, while annotators often struggle at this task, there is substantial variance in annotator skill and that given proper incentives, annotators can improve at this task over time.
arXiv Detail & Related papers (2022-12-24T06:40:25Z) - GenNI: Human-AI Collaboration for Data-Backed Text Generation [102.08127062293111]
Table2Text systems generate textual output based on structured data utilizing machine learning.
GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text.
arXiv Detail & Related papers (2021-10-19T18:07:07Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
Malicious actors create inauthentic social media accounts controlled in part by algorithms, known as social bots, to disseminate misinformation and agitate online discussion.
We show that different types of bots are characterized by different behavioral features.
We propose a new supervised learning method that trains classifiers specialized for each class of bots and combines their decisions through the maximum rule.
arXiv Detail & Related papers (2020-06-11T22:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.