Quantum solvability of a nonlinear $\delta$-type mass profile system:
Coupling constant quantization
- URL: http://arxiv.org/abs/2207.14543v1
- Date: Fri, 29 Jul 2022 08:21:09 GMT
- Title: Quantum solvability of a nonlinear $\delta$-type mass profile system:
Coupling constant quantization
- Authors: V. Chithiika Ruby, V. K. Chandrasekar and M. Lakshmanan
- Abstract summary: We consider a general ordered position-dependent mass Hamiltonian in which the ordering parameters of the mass term are treated as arbitrary.
We observe that the quantum system admits bounded solutions but importantly the coupling parameter of the system gets quantized.
- Score: 1.3907460999698045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we discuss the quantum dynamics of a nonlinear system that
admits temporally localized solutions at the classical level. We consider a
general ordered position-dependent mass Hamiltonian in which the ordering
parameters of the mass term are treated as arbitrary. The mass function here is
singular at the origin. We observe that the quantum system admits bounded
solutions but importantly the coupling parameter of the system gets quantized
which has also been confirmed by the semiclassical study as well.
Related papers
- Scaled quantum theory. The bouncing ball problem [0.0]
The standard bouncing ball problem is analyzed under the presence of a gravitational field and harmonic potential.
The quantum-classical transition of the density matrix is described by the linear scaled von Neumann equation for mixed states.
arXiv Detail & Related papers (2024-10-14T10:09:48Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Hybrid classical-quantum systems in terms of moments [0.0]
We describe the dynamics of hybrid systems with mixed classical and quantum degrees of freedom.
In particular, a closed formula for the Poisson brackets between any two moments for an arbitrary number of degrees of freedom is presented.
arXiv Detail & Related papers (2023-12-21T15:36:40Z) - Decoherence time in quantum harmonic oscillators as quantum memory
systems [0.7252027234425334]
This paper is concerned with open quantum harmonic oscillators (OQHOs) described by linear quantum differential equations.
In a more realistic case of system-environment coupling, we define a memory decoherence horizon as a typical time for a mean-square deviation of the system variables.
We consider the decoherence time over the energy and coupling matrix of the OQHO as a memory system in its storage phase and obtain a condition under which the zero Hamiltonian delivers a suboptimal solution.
arXiv Detail & Related papers (2023-10-26T08:29:42Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantized dynamics in closed quantum systems [0.0]
We propose an approach to process data from interferometric measurements on a closed quantum system at random times.
A classical limit exists which is separated from the quantum fluctuations.
Some generic properties are linked to a quantized Berry phase.
arXiv Detail & Related papers (2020-12-07T14:15:46Z) - Quantum and semi-classical aspects of confined systems with variable
mass [0.3149883354098941]
We explore the quantization of classical models with position-dependent mass terms constrained to a bounded interval in the canonical position.
For a non-separable function $Pi(q,p)$, a purely quantum minimal-coupling term arises in the form of a vector potential for both the quantum and semi-classical models.
arXiv Detail & Related papers (2020-05-28T18:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.