Representing Syntax and Composition with Geometric Transformations
- URL: http://arxiv.org/abs/2106.01904v1
- Date: Thu, 3 Jun 2021 14:53:34 GMT
- Title: Representing Syntax and Composition with Geometric Transformations
- Authors: Lorenzo Bertolini, Julie Weeds, David Weir, Qiwei Peng
- Abstract summary: syntactic graphs (SyGs) as a word's context has been shown to be beneficial for distributional semantic models (DSMs)
We investigate which GT better encodes syntactic relations, so that these representations can be used to enhance phrase-level composition via syntactic contextualisation.
- Score: 1.439493901412045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exploitation of syntactic graphs (SyGs) as a word's context has been
shown to be beneficial for distributional semantic models (DSMs), both at the
level of individual word representations and in deriving phrasal
representations via composition. However, notwithstanding the potential
performance benefit, the syntactically-aware DSMs proposed to date have huge
numbers of parameters (compared to conventional DSMs) and suffer from data
sparsity. Furthermore, the encoding of the SyG links (i.e., the syntactic
relations) has been largely limited to linear maps. The knowledge graphs'
literature, on the other hand, has proposed light-weight models employing
different geometric transformations (GTs) to encode edges in a knowledge graph
(KG). Our work explores the possibility of adopting this family of models to
encode SyGs. Furthermore, we investigate which GT better encodes syntactic
relations, so that these representations can be used to enhance phrase-level
composition via syntactic contextualisation.
Related papers
- Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians.
We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem.
We exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods.
arXiv Detail & Related papers (2024-11-08T17:40:43Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - Semantic Random Walk for Graph Representation Learning in Attributed
Graphs [2.318473106845779]
We propose a novel semantic graph representation (SGR) method to formulate the joint optimization of the two heterogeneous sources into a common high-order proximity based framework.
Conventional embedding methods that consider high-order topology proximities can then be easily applied to the newly constructed graph to learn the representations of both node and attribute.
The learned attribute embeddings can also effectively support some semantic-oriented inference tasks, helping to reveal the graph's deep semantic.
arXiv Detail & Related papers (2023-05-11T02:35:16Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain.
We present Graph Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding method that is able to learn domain-invariant semantics from both word sequences and syntactic graphs.
arXiv Detail & Related papers (2022-05-18T07:47:01Z) - GN-Transformer: Fusing Sequence and Graph Representation for Improved
Code Summarization [0.0]
We propose a novel method, GN-Transformer, to learn end-to-end on a fused sequence and graph modality.
The proposed methods achieve state-of-the-art performance in two code summarization datasets and across three automatic code summarization metrics.
arXiv Detail & Related papers (2021-11-17T02:51:37Z) - The Low-Dimensional Linear Geometry of Contextualized Word
Representations [27.50785941238007]
We study the linear geometry of contextualized word representations in ELMO and BERT.
We show that a variety of linguistic features are encoded in low-dimensional subspaces.
arXiv Detail & Related papers (2021-05-15T00:58:08Z) - Learn from Syntax: Improving Pair-wise Aspect and Opinion Terms
Extractionwith Rich Syntactic Knowledge [17.100366742363803]
We propose to enhance the pair-wise aspect and opinion terms extraction (PAOTE) task by incorporating rich syntactic knowledge.
We first build a syntax fusion encoder for encoding syntactic features, including a label-aware graph convolutional network (LAGCN) for modeling the dependency edges and labels.
During pairing, we then adopt Biaffine and Triaffine scoring for high-order aspect-opinion term pairing, in the meantime re-harnessing the syntax-enriched representations in LAGCN for syntactic-aware scoring.
arXiv Detail & Related papers (2021-05-06T08:45:40Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - GINet: Graph Interaction Network for Scene Parsing [58.394591509215005]
We propose a Graph Interaction unit (GI unit) and a Semantic Context Loss (SC-loss) to promote context reasoning over image regions.
The proposed GINet outperforms the state-of-the-art approaches on the popular benchmarks, including Pascal-Context and COCO Stuff.
arXiv Detail & Related papers (2020-09-14T02:52:45Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.