論文の概要: Knowing the No-match: Entity Alignment with Dangling Cases
- arxiv url: http://arxiv.org/abs/2106.02248v1
- Date: Fri, 4 Jun 2021 04:28:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-07 15:22:50.549318
- Title: Knowing the No-match: Entity Alignment with Dangling Cases
- Title(参考訳): no-matchを知る: ダングリングケースとのエンティティアライメント
- Authors: Zequn Sun, Muhao Chen, Wei Hu
- Abstract要約: 本稿では,知識グラフ(KG)におけるエンティティアライメントの新しい問題設定について検討する。
KG は異なる実体の集合を持つため、それらの間にアライメントが見つからない実体が存在する可能性があり、実体をダングリングする問題を引き起こす。
我々は、新しいデータセットを構築し、エンティティアライメントとダングリングエンティティ検出の両方のためのマルチタスク学習フレームワークを設計する。
- 参考スコア(独自算出の注目度): 22.909706377522614
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper studies a new problem setting of entity alignment for knowledge
graphs (KGs). Since KGs possess different sets of entities, there could be
entities that cannot find alignment across them, leading to the problem of
dangling entities. As the first attempt to this problem, we construct a new
dataset and design a multi-task learning framework for both entity alignment
and dangling entity detection. The framework can opt to abstain from predicting
alignment for the detected dangling entities. We propose three techniques for
dangling entity detection that are based on the distribution of
nearest-neighbor distances, i.e., nearest neighbor classification, marginal
ranking and background ranking. After detecting and removing dangling entities,
an incorporated entity alignment model in our framework can provide more robust
alignment for remaining entities. Comprehensive experiments and analyses
demonstrate the effectiveness of our framework. We further discover that the
dangling entity detection module can, in turn, improve alignment learning and
the final performance. The contributed resource is publicly available to foster
further research.
- Abstract(参考訳): 本稿では,知識グラフ(KG)におけるエンティティアライメントの新しい問題設定について検討する。
KG は異なる実体の集合を持つため、それらの間にアライメントが見つからない実体が存在する可能性があり、実体をダングリングする問題を引き起こす。
この問題の最初の試みとして、新しいデータセットを構築し、エンティティアライメントとダングリングエンティティ検出の両方のためのマルチタスク学習フレームワークを設計する。
このフレームワークは、検出されたダングリングエンティティのアライメントの予測を回避できる。
本研究では,近距離分布,すなわち近距離分類,辺縁ランキング,背景ランキングに基づくエンティティ検出のための3つの手法を提案する。
ダングリングエンティティを検出して削除した後、我々のフレームワークに組み込まれたエンティティアライメントモデルは、残りのエンティティに対してより堅牢なアライメントを提供することができる。
総合的な実験と分析は、我々のフレームワークの有効性を実証する。
さらに、ダングリングエンティティ検出モジュールは、アライメント学習と最終的なパフォーマンスを向上させることができることをさらに発見する。
貢献した資源は、さらなる研究を促進するために公開されている。
関連論文リスト
- OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting [49.655711022673046]
OneNetは、大規模言語モデル(LLM)の少数ショット学習機能を利用する革新的なフレームワークで、微調整は不要である。
1)無関係なエンティティを要約してフィルタリングすることで入力を単純化するエンティティリダクションプロセッサ,(2)コンテキスト的キューと事前知識を組み合わせて正確なエンティティリンクを行うデュアルパースペクティブエンティティリンカ,(3)エンティティリンク推論における幻覚を緩和するユニークな一貫性アルゴリズムを利用するエンティティコンセンサス判定器,である。
論文 参考訳(メタデータ) (2024-10-10T02:45:23Z) - Lambda: Learning Matchable Prior For Entity Alignment with Unlabeled Dangling Cases [49.86384156476041]
検出とエンティティアライメントのダングリングのためのフレームワーク textitLambda を提案する。
Lambdaは、KEESAと呼ばれるGNNベースのエンコーダと、EAのスペクトルコントラスト学習と、iPULEと呼ばれる検出をダングリングするための正の未ラベル学習アルゴリズムを備えている。
論文 参考訳(メタデータ) (2024-03-16T17:21:58Z) - EventEA: Benchmarking Entity Alignment for Event-centric Knowledge
Graphs [17.27027602556303]
過去の進歩は偏りと不整合性評価によるものであることが示されています。
我々は、イベント中心のKGに基づいて、異種関係と属性を持つ新しいデータセットを構築した。
この問題に対する新たなアプローチとして,エンティティアライメントのためのタイムアウェアリテラルエンコーダを提案する。
論文 参考訳(メタデータ) (2022-11-05T05:34:21Z) - Large-scale Entity Alignment via Knowledge Graph Merging, Partitioning
and Embedding [29.81122170002021]
本稿では,3つの視点から構造とアライメント損失を低減するため,スケーラブルなGNNベースのエンティティアライメント手法を提案する。
まず,中心性に基づく部分グラフ生成アルゴリズムを提案し,異なる部分グラフ間のブリッジとして機能するいくつかのランドマークエンティティをリコールする。
第二に、不完全近傍部分グラフから実体表現を復元する自己教師型実体再構成を導入する。
第三に、推論過程において、サブグラフの埋め込みをマージして、アライメント探索のための単一の空間を作る。
論文 参考訳(メタデータ) (2022-08-23T07:09:59Z) - Facing Changes: Continual Entity Alignment for Growing Knowledge Graphs [22.88552158340435]
我々は、連続的なエンティティアライメント(continuous entity alignment)と呼ばれる現実的だが探索されていない設定を提案し、掘り下げる。
エンティティの隣接性に基づいてエンティティの表現を再構築し、新しいエンティティへの埋め込みを迅速に生成する。
知識増強のために信頼できるアライメントを抽出しながら、部分的な事前整列されたエンティティペアを選択してKGの一部のみを訓練する。
論文 参考訳(メタデータ) (2022-07-23T06:52:44Z) - Dangling-Aware Entity Alignment with Mixed High-Order Proximities [65.53948800594802]
ダングリングを意識したエンティティアライメントは、知識グラフにおいて未探索だが重要な問題である。
ダングリング・アウェア・エンティティアライメントにおける混合高次近似を用いたフレームワークを提案する。
我々のフレームワークはより正確にダングリングエンティティを検出し、マッチング可能なエンティティをよりよく調整します。
論文 参考訳(メタデータ) (2022-05-05T02:39:55Z) - Towards Entity Alignment in the Open World: An Unsupervised Approach [29.337157862514204]
これは知識のカバレッジと品質を高めるために知識グラフ(kgs)を統合する上で重要なステップである。
最先端のソリューションは、モデルトレーニングにラベル付きデータに頼る傾向があります。
オープンな世界でエンティティアライメントを行う監視されていないフレームワークを提供します。
論文 参考訳(メタデータ) (2021-01-26T03:10:24Z) - Visual Pivoting for (Unsupervised) Entity Alignment [93.82387952905756]
本研究は、異種知識グラフ(KGs)におけるエンティティの整列のための視覚的意味表現の使用について研究する。
提案した新しいアプローチであるEVAは、クロスグラフエンティティアライメントのための強い信号を提供する包括的エンティティ表現を生成する。
論文 参考訳(メタデータ) (2020-09-28T20:09:40Z) - Neighborhood Matching Network for Entity Alignment [71.24217694278616]
Neighborhood Matching Network (NMN)は、新しいエンティティアライメントフレームワークである。
NMNは、トポロジカル構造と近傍差の両方を捉えるために、エンティティ間の類似性を推定する。
まず、新しいグラフサンプリング法を用いて、各エンティティの識別的近傍を蒸留する。
その後、クロスグラフの近傍マッチングモジュールを採用し、与えられたエンティティペアの近傍差を共同で符号化する。
論文 参考訳(メタデータ) (2020-05-12T08:26:15Z) - Cross-lingual Entity Alignment with Incidental Supervision [76.66793175159192]
本稿では,多言語KGとテキストコーパスを共通埋め込み方式で共同で表現する,偶発的に教師付きモデルであるJEANSを提案する。
ベンチマークデータセットの実験では、JEANSがエンティティアライメントとインシデントインシデントインシデントインスペクションの改善を期待できる結果となった。
論文 参考訳(メタデータ) (2020-05-01T01:53:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。