Computing Marginal and Conditional Divergences between Decomposable
Models with Applications
- URL: http://arxiv.org/abs/2310.09129v1
- Date: Fri, 13 Oct 2023 14:17:25 GMT
- Title: Computing Marginal and Conditional Divergences between Decomposable
Models with Applications
- Authors: Loong Kuan Lee, Geoffrey I. Webb, Daniel F. Schmidt, Nico Piatkowski
- Abstract summary: We propose an approach to compute the exact alpha-beta divergence between any marginal or conditional distribution of two decomposable models.
We show how our method can be used to analyze distributional changes by first applying it to a benchmark image dataset.
Based on our framework, we propose a novel way to quantify the error in contemporary superconducting quantum computers.
- Score: 7.89568731669979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to compute the exact divergence between two high-dimensional
distributions is useful in many applications but doing so naively is
intractable. Computing the alpha-beta divergence -- a family of divergences
that includes the Kullback-Leibler divergence and Hellinger distance -- between
the joint distribution of two decomposable models, i.e chordal Markov networks,
can be done in time exponential in the treewidth of these models. However,
reducing the dissimilarity between two high-dimensional objects to a single
scalar value can be uninformative. Furthermore, in applications such as
supervised learning, the divergence over a conditional distribution might be of
more interest. Therefore, we propose an approach to compute the exact
alpha-beta divergence between any marginal or conditional distribution of two
decomposable models. Doing so tractably is non-trivial as we need to decompose
the divergence between these distributions and therefore, require a
decomposition over the marginal and conditional distributions of these models.
Consequently, we provide such a decomposition and also extend existing work to
compute the marginal and conditional alpha-beta divergence between these
decompositions. We then show how our method can be used to analyze
distributional changes by first applying it to a benchmark image dataset.
Finally, based on our framework, we propose a novel way to quantify the error
in contemporary superconducting quantum computers. Code for all experiments is
available at: https://lklee.dev/pub/2023-icdm/code
Related papers
- Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation [58.19676004192321]
Diffusion models (DMs), which enable both image generation from noise and inversion from data, have inspired powerful unpaired image-to-image (I2I) translation algorithms.
We tackle this problem with Schrodinger Bridges (SBs), which are differential equations (SDEs) between distributions with minimal transport cost.
Inspired by this observation, we propose Latent Schrodinger Bridges (LSBs) that approximate the SB ODE via pre-trained Stable Diffusion.
We demonstrate that our algorithm successfully conduct competitive I2I translation in unsupervised setting with only a fraction of cost required by previous DM-
arXiv Detail & Related papers (2024-11-22T11:24:14Z) - A Stein Gradient Descent Approach for Doubly Intractable Distributions [5.63014864822787]
We propose a novel Monte Carlo Stein variational gradient descent (MC-SVGD) approach for inference for doubly intractable distributions.
The proposed method achieves substantial computational gains over existing algorithms, while providing comparable inferential performance for the posterior distributions.
arXiv Detail & Related papers (2024-10-28T13:42:27Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models [45.60426164657739]
We develop non-asymptotic convergence theory for a diffusion-based sampler.
We prove that $d/varepsilon$ are sufficient to approximate the target distribution to within $varepsilon$ total-variation distance.
Our results also characterize how $ell$ score estimation errors affect the quality of the data generation processes.
arXiv Detail & Related papers (2024-08-05T09:02:24Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Matching Normalizing Flows and Probability Paths on Manifolds [57.95251557443005]
Continuous Normalizing Flows (CNFs) are generative models that transform a prior distribution to a model distribution by solving an ordinary differential equation (ODE)
We propose to train CNFs by minimizing probability path divergence (PPD), a novel family of divergences between the probability density path generated by the CNF and a target probability density path.
We show that CNFs learned by minimizing PPD achieve state-of-the-art results in likelihoods and sample quality on existing low-dimensional manifold benchmarks.
arXiv Detail & Related papers (2022-07-11T08:50:19Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
Oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) are more ambiguously determined from the data.
Existing inference methods tend to yield very noisy and underestimated OEF maps, while overestimating DBV.
This work describes a novel probabilistic machine learning approach that can infer plausible distributions of OEF and DBV.
arXiv Detail & Related papers (2022-03-11T10:47:16Z) - Resampling Base Distributions of Normalizing Flows [0.0]
We introduce a base distribution for normalizing flows based on learned rejection sampling.
We develop suitable learning algorithms using both maximizing the log-likelihood and the optimization of the reverse Kullback-Leibler divergence.
arXiv Detail & Related papers (2021-10-29T14:44:44Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
Particle variational inference (PVI) uses an ensemble of models as an empirical approximation for the posterior distribution.
PVI iteratively updates each model with a repulsion force to ensure the diversity of the optimized models.
We derive a novel generalization error bound and show that it can be reduced by enhancing the diversity of models.
arXiv Detail & Related papers (2021-06-09T12:13:51Z) - Distributional Sliced Embedding Discrepancy for Incomparable
Distributions [22.615156512223766]
Gromov-Wasserstein (GW) distance is a key tool for manifold learning and cross-domain learning.
We propose a novel approach for comparing two computation distributions, that hinges on the idea of distributional slicing, embeddings, and on computing the closed-form Wasserstein distance between the sliced distributions.
arXiv Detail & Related papers (2021-06-04T15:11:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.