Decentralized Entropic Optimal Transport for Distributed Distribution Comparison
- URL: http://arxiv.org/abs/2301.12065v2
- Date: Mon, 22 Jul 2024 09:06:22 GMT
- Title: Decentralized Entropic Optimal Transport for Distributed Distribution Comparison
- Authors: Xiangfeng Wang, Hongteng Xu, Moyi Yang,
- Abstract summary: We propose a novel decentralized entropic optimal transport (DEOT) method, which provides a communication-efficient and privacy-preserving solution to this problem.
In particular, we design a mini-batch randomized block-coordinate descent scheme to optimize the DEOT distance in its dual form.
We show that the proposed MRBCD scheme and kernel approximation method also apply to entropic Gromov-Wasserstein distance.
- Score: 28.122302344024387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributed distribution comparison aims to measure the distance between the distributions whose data are scattered across different agents in a distributed system and cannot even be shared directly among the agents. In this study, we propose a novel decentralized entropic optimal transport (DEOT) method, which provides a communication-efficient and privacy-preserving solution to this problem with theoretical guarantees. In particular, we design a mini-batch randomized block-coordinate descent (MRBCD) scheme to optimize the DEOT distance in its dual form. The dual variables are scattered across different agents and updated locally and iteratively with limited communications among partial agents. The kernel matrix involved in the gradients of the dual variables is estimated by a decentralized kernel approximation method, in which each agent only needs to approximate and store a sub-kernel matrix by one-shot communication and without sharing raw data. Besides computing entropic Wasserstein distance, we show that the proposed MRBCD scheme and kernel approximation method also apply to entropic Gromov-Wasserstein distance. We analyze our method's communication complexity and, under mild assumptions, provide a theoretical bound for the approximation error caused by the convergence error, the estimated kernel, and the mismatch between the storage and communication protocols. In addition, we discuss the trade-off between the precision of the EOT distance and the strength of privacy protection when implementing our method. Experiments on synthetic data and real-world distributed domain adaptation tasks demonstrate the effectiveness of our method.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Distributed Bayesian Estimation in Sensor Networks: Consensus on
Marginal Densities [15.038649101409804]
We derive a distributed provably-correct algorithm in the functional space of probability distributions over continuous variables.
We leverage these results to obtain new distributed estimators restricted to subsets of variables observed by individual agents.
This relates to applications such as cooperative localization and federated learning, where the data collected at any agent depends on a subset of all variables of interest.
arXiv Detail & Related papers (2023-12-02T21:10:06Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TP is a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling.
Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders.
arXiv Detail & Related papers (2023-03-01T15:16:56Z) - Cycle Consistent Probability Divergences Across Different Spaces [38.43511529063335]
Discrepancy measures between probability distributions are at the core of statistical inference and machine learning.
This work proposes a novel unbalanced Monge optimal transport formulation for matching, up to isometries, distributions on different spaces.
arXiv Detail & Related papers (2021-11-22T16:35:58Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Distributional Sliced Embedding Discrepancy for Incomparable
Distributions [22.615156512223766]
Gromov-Wasserstein (GW) distance is a key tool for manifold learning and cross-domain learning.
We propose a novel approach for comparing two computation distributions, that hinges on the idea of distributional slicing, embeddings, and on computing the closed-form Wasserstein distance between the sliced distributions.
arXiv Detail & Related papers (2021-06-04T15:11:30Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Majorization Minimization Methods for Distributed Pose Graph
Optimization with Convergence Guarantees [0.76146285961466]
We show that our proposed methods are guaranteed to converge to first-order critical points under mild conditions.
Since our proposed methods rely a proximal operator of distributed PGO, the convergence rate can be significantly accelerated.
The efficacy of this work is validated through applications on a number of 2D and 3D SLAM datasets.
arXiv Detail & Related papers (2020-03-11T15:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.