論文の概要: Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related
Domains
- arxiv url: http://arxiv.org/abs/2106.02792v1
- Date: Sat, 5 Jun 2021 04:31:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-14 08:57:37.719216
- Title: Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related
Domains
- Title(参考訳): 自殺リスク評価のための弱監視手法:関連ドメインの役割
- Authors: Chenghao Yang, Yudong Zhang, Smaranda Muresan
- Abstract要約: 本稿では,自殺リスク評価に対する弱監督的アプローチのいくつかのクラスに対する実証的研究を提案する。
精神保健に関する問題(不安、抑うつなど)に基づく疑似ラベルの使用は、自殺リスク評価のためのモデルパフォーマンスの向上に役立つことを示す。
- 参考スコア(独自算出の注目度): 19.397193137918176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social media has become a valuable resource for the study of suicidal
ideation and the assessment of suicide risk. Among social media platforms,
Reddit has emerged as the most promising one due to its anonymity and its focus
on topic-based communities (subreddits) that can be indicative of someone's
state of mind or interest regarding mental health disorders such as
r/SuicideWatch, r/Anxiety, r/depression. A challenge for previous work on
suicide risk assessment has been the small amount of labeled data. We propose
an empirical investigation into several classes of weakly-supervised
approaches, and show that using pseudo-labeling based on related issues around
mental health (e.g., anxiety, depression) helps improve model performance for
suicide risk assessment.
- Abstract(参考訳): ソーシャルメディアは自殺イデオロギーの研究や自殺リスクの評価において貴重な資源となっている。
ソーシャルメディアプラットフォームの中で、redditは匿名性と、誰かの精神状態や、r/suicidewatch、r/anxiety、r/depressionといった精神疾患に対する関心を示すトピックベースのコミュニティ(サブreddit)にフォーカスしていることから、最も有望な存在となっている。
自殺リスクアセスメントに関する以前の研究の課題は、少量のラベル付きデータである。
本稿では,いくつかの弱教師付きアプローチのクラスについて経験的研究を行い,メンタルヘルス(不安,抑うつなど)に関連する諸問題に基づく疑似ラベルの使用が自殺リスク評価のモデル性能の向上に寄与することを示す。
関連論文リスト
- Non-Invasive Suicide Risk Prediction Through Speech Analysis [74.8396086718266]
自動自殺リスク評価のための非侵襲的音声ベースアプローチを提案する。
我々は、wav2vec、解釈可能な音声・音響特徴、深層学習に基づくスペクトル表現の3つの特徴セットを抽出する。
我々の最も効果的な音声モデルは、6.6.2,%$のバランスの取れた精度を達成する。
論文 参考訳(メタデータ) (2024-04-18T12:33:57Z) - CautionSuicide: A Deep Learning Based Approach for Detecting Suicidal
Ideation in Real Time Chatbot Conversation [0.0]
自殺の早期発見は自殺の予防に役立つ。
本稿では,デジタルコンテンツにおける自殺的思考を検出するための,新しいシンプルな深層学習モデルを提案する。
論文 参考訳(メタデータ) (2024-01-02T04:14:16Z) - Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted
Outcomes to Analyze Longitudinal Social Media Data [2.76101452577748]
新型コロナウイルスのパンデミックは世界中でメンタルヘルスの危機をエスカレートしている。
自殺は、恥、虐待、放棄、うつ病のような精神状態などの社会的要因によって引き起こされる。
これらの状況が発展するにつれて、自殺的思考の兆候がソーシャルメディアの相互作用に現れる可能性がある。
論文 参考訳(メタデータ) (2023-12-13T17:15:12Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - Am I No Good? Towards Detecting Perceived Burdensomeness and Thwarted
Belongingness from Suicide Notes [51.378225388679425]
本稿では,自殺ノートから知覚的バーデンサムネス(PB)とThwarted Belongingness(TB)を検出する新しい課題に対処するエンドツーエンドマルチタスクシステムを提案する。
また、ベンチマークCEASE-v2.0データセットに基づいて、手動で翻訳したコード混合自殺メモコーパス、CoMCEASE-v2.0を導入する。
自殺ノートの時間方向と感情情報を利用して全体のパフォーマンスを向上する。
論文 参考訳(メタデータ) (2022-05-20T06:31:08Z) - Quantifying the Suicidal Tendency on Social Media: A Survey [0.0]
自殺は早産だが予防可能な死因の1つである。
近年の研究では、ソーシャルメディアデータのマイニングが、利用者の自殺傾向の定量化に役立っていることが示されている。
本書は、精神医療の分類を解明し、ソーシャルメディアデータにおける自殺傾向の定量化の可能性を検討するための最近の試みを強調している。
論文 参考訳(メタデータ) (2021-10-04T12:26:14Z) - Characterization of Time-variant and Time-invariant Assessment of
Suicidality on Reddit using C-SSRS [9.424631103856596]
Redditデータから,重症度と時間性の観点から自殺リスクを評価するディープラーニングアルゴリズムを開発した。
本研究では, 時間変動アプローチが自殺関連思考と支持行動の評価において時間不変手法を上回っていることを示唆した。
提案手法は臨床診断面接と統合して自殺リスク評価を改善することができる。
論文 参考訳(メタデータ) (2021-04-09T01:39:41Z) - Building and Using Personal Knowledge Graph to Improve Suicidal Ideation
Detection on Social Media [4.769234388745917]
ソーシャルメディア上での自殺思考検出のための深層ニューラルネットワークを用いた,自殺指向の知識グラフの構築と統合を行う。
ソーシャルメディアに基づく自殺思考検出は93%以上の精度を達成できることを示す。
これらのカテゴリでは、投稿されたテキスト、ストレスレベル、ストレス持続時間、投稿された画像、反響的な思考が自殺的思考の検出に寄与する。
論文 参考訳(メタデータ) (2020-12-16T18:09:32Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
不安障害は、子供と成人の両方に影響を及ぼす最も一般的な精神医学的問題である。
スマートフォンから受動的かつ控えめなデータ収集を活用することは、古典的な方法の代替となるかもしれない。
eWellnessは、個人デバイスのセンサとユーザログデータの完全な適合性を、連続的かつ受動的に追跡するために設計された、実験的なモバイルアプリケーションである。
論文 参考訳(メタデータ) (2020-08-09T20:22:52Z) - Suicidal Ideation and Mental Disorder Detection with Attentive Relation
Networks [43.2802002858859]
本稿では,語彙に基づく感情スコアと潜在トピックを用いたテキスト表現を強化する。
本研究は,自殺思考と精神障害を関連するリスク指標を用いて検出する関係ネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-16T11:18:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。