論文の概要: CautionSuicide: A Deep Learning Based Approach for Detecting Suicidal
Ideation in Real Time Chatbot Conversation
- arxiv url: http://arxiv.org/abs/2401.01023v1
- Date: Tue, 2 Jan 2024 04:14:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-03 14:45:40.840364
- Title: CautionSuicide: A Deep Learning Based Approach for Detecting Suicidal
Ideation in Real Time Chatbot Conversation
- Title(参考訳): alertsuicide:リアルタイムチャットボット会話における自殺イデオロギー検出のための深層学習に基づくアプローチ
- Authors: Nelly Elsayed, Zag ElSayed, Murat Ozer
- Abstract要約: 自殺の早期発見は自殺の予防に役立つ。
本稿では,デジタルコンテンツにおける自殺的思考を検出するための,新しいシンプルな深層学習モデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Suicide is recognized as one of the most serious concerns in the modern
society. Suicide causes tragedy that affects countries, communities, and
families. There are many factors that lead to suicidal ideations. Early
detection of suicidal ideations can help to prevent suicide occurrence by
providing the victim with the required professional support, especially when
the victim does not recognize the danger of having suicidal ideations. As
technology usage has increased, people share and express their ideations
digitally via social media, chatbots, and other digital platforms. In this
paper, we proposed a novel, simple deep learning-based model to detect suicidal
ideations in digital content, mainly focusing on chatbots as the primary data
source. In addition, we provide a framework that employs the proposed suicide
detection integration with a chatbot-based support system.
- Abstract(参考訳): 自殺は現代社会における最も深刻な懸念の1つとして認識されている。
自殺は国、地域、家族に影響を与える悲劇を引き起こす。
自殺の考えにつながる要因はたくさんあります。
自殺観念の早期発見は、特に自殺観念の危険性を認識していない場合において、被害者に必要な専門的支援を与えることによって自殺の発生を防止するのに役立つ。
テクノロジーの利用が増加するにつれ、人々はソーシャルメディア、チャットボット、その他のデジタルプラットフォームを通じて、自分の考えをデジタルで共有し表現する。
本稿では,主にチャットボットを主データ源とする,デジタルコンテンツにおける自殺的思考を検出するための,シンプルな深層学習モデルを提案する。
さらに,提案する自殺検出機能とチャットボットベースの支援システムを併用したフレームワークを提供する。
関連論文リスト
- Non-Invasive Suicide Risk Prediction Through Speech Analysis [74.8396086718266]
自動自殺リスク評価のための非侵襲的音声ベースアプローチを提案する。
我々は、wav2vec、解釈可能な音声・音響特徴、深層学習に基づくスペクトル表現の3つの特徴セットを抽出する。
我々の最も効果的な音声モデルは、6.6.2,%$のバランスの取れた精度を達成する。
論文 参考訳(メタデータ) (2024-04-18T12:33:57Z) - Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted
Outcomes to Analyze Longitudinal Social Media Data [2.76101452577748]
新型コロナウイルスのパンデミックは世界中でメンタルヘルスの危機をエスカレートしている。
自殺は、恥、虐待、放棄、うつ病のような精神状態などの社会的要因によって引き起こされる。
これらの状況が発展するにつれて、自殺的思考の兆候がソーシャルメディアの相互作用に現れる可能性がある。
論文 参考訳(メタデータ) (2023-12-13T17:15:12Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - DISARM: Detecting the Victims Targeted by Harmful Memes [49.12165815990115]
DISARMは、有害なミームを検出するために名前付きエンティティ認識と個人識別を使用するフレームワークである。
DISARMは10の単一モーダル・マルチモーダルシステムより著しく優れていることを示す。
複数の強力なマルチモーダルライバルに対して、有害なターゲット識別の相対誤差率を最大9ポイントまで下げることができる。
論文 参考訳(メタデータ) (2022-05-11T19:14:26Z) - Suicidal Ideation Detection on Social Media: A Review of Machine
Learning Methods [0.34265828682659694]
ソーシャルメディアにおける自殺観念と行動を特定するために多くの研究がなされている。
本稿では,ソーシャルメディア上での機械学習アルゴリズムを用いた自殺思考の検出に関する最近の研究成果について概説する。
論文 参考訳(メタデータ) (2022-01-25T18:23:47Z) - An ensemble deep learning technique for detecting suicidal ideation from
posts in social media platforms [0.0]
本稿ではLSTM-Attention-CNN複合モデルを提案する。
提案されたモデルは90.3%の精度、F1スコア92.6%の精度を示した。
論文 参考訳(メタデータ) (2021-12-17T15:34:03Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related
Domains [19.397193137918176]
本稿では,自殺リスク評価に対する弱監督的アプローチのいくつかのクラスに対する実証的研究を提案する。
精神保健に関する問題(不安、抑うつなど)に基づく疑似ラベルの使用は、自殺リスク評価のためのモデルパフォーマンスの向上に役立つことを示す。
論文 参考訳(メタデータ) (2021-06-05T04:31:06Z) - Building and Using Personal Knowledge Graph to Improve Suicidal Ideation
Detection on Social Media [4.769234388745917]
ソーシャルメディア上での自殺思考検出のための深層ニューラルネットワークを用いた,自殺指向の知識グラフの構築と統合を行う。
ソーシャルメディアに基づく自殺思考検出は93%以上の精度を達成できることを示す。
これらのカテゴリでは、投稿されたテキスト、ストレスレベル、ストレス持続時間、投稿された画像、反響的な思考が自殺的思考の検出に寄与する。
論文 参考訳(メタデータ) (2020-12-16T18:09:32Z) - Detecting Perceived Emotions in Hurricane Disasters [62.760131661847986]
私たちはHurricaneEmoを紹介します。HurricaneEmoは、Harvey、Irma、Mariaの3つのハリケーンにまたがる15,000の英語ツイートの感情データセットです。
本稿では, きめ細かい感情を包括的に研究し, 粗い感情群を識別するための分類タスクを提案する。
論文 参考訳(メタデータ) (2020-04-29T16:17:49Z) - Suicidal Ideation and Mental Disorder Detection with Attentive Relation
Networks [43.2802002858859]
本稿では,語彙に基づく感情スコアと潜在トピックを用いたテキスト表現を強化する。
本研究は,自殺思考と精神障害を関連するリスク指標を用いて検出する関係ネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-16T11:18:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。