Optical superradiance of a pair of color centers in an integrated
silicon-carbide-on-insulator microresonator
- URL: http://arxiv.org/abs/2202.04845v1
- Date: Thu, 10 Feb 2022 05:33:28 GMT
- Title: Optical superradiance of a pair of color centers in an integrated
silicon-carbide-on-insulator microresonator
- Authors: Daniil M. Lukin, Melissa A. Guidry, Joshua Yang, Misagh Ghezellou,
Sattwik Deb Mishra, Hiroshi Abe, Takeshi Ohshima, Jawad Ul-Hassan, and Jelena
Vu\v{c}kovi\'c
- Abstract summary: We report on the integration of near-transform-limited silicon defects into microdisk resonators fabricated in a CMOS-compatible 4H-Silicon Carbide-on-Insulator platform.
We demonstrate a single-emitter cooperativity of up to 0.8 as well as optical superradiance from a pair of color centers coupled to the same cavity mode.
- Score: 1.4085555227308877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An outstanding challenge for color center-based quantum information
processing technologies is the integration of optically-coherent emitters into
scalable thin-film photonics. Here, we report on the integration of
near-transform-limited silicon vacancy (V$_{\text{Si}}$) defects into microdisk
resonators fabricated in a CMOS-compatible 4H-Silicon Carbide-on-Insulator
platform. We demonstrate a single-emitter cooperativity of up to 0.8 as well as
optical superradiance from a pair of color centers coupled to the same cavity
mode. We investigate the effect of multimode interference on the photon
scattering dynamics from this multi-emitter cavity quantum electrodynamics
system. These results are crucial for the development of quantum networks in
silicon carbide and bridge the classical-quantum photonics gap by uniting
optically-coherent spin defects with wafer-scalable, state-of-the-art
photonics.
Related papers
- Single V2 defect in 4H Silicon Carbide Schottky diode at low temperature [1.2760250066401975]
We study the behaviour of single silicon vacancy colour centres in a metal-semiconductor (Au/Ti/4H-SiC) epitaxial wafer device.
Our work shows the first demonstration of low temperature integration of a Schottky device with optical microstructures for quantum applications.
arXiv Detail & Related papers (2024-10-11T17:37:18Z) - Scalable construction of hybrid quantum photonic cavities [0.0]
We introduce a concept that generates a finely tunable PhC cavity at a select wavelength between two heterogeneous optical materials.
The cavity is formed by stamping a hard-to-process material with simple waveguide geometries on top of an easy-to-process material.
We simulate our concept for the particularly challenging design problem of multiplexed quantum repeaters based on arrays of cavity-coupled diamond color centers.
arXiv Detail & Related papers (2024-10-04T18:36:39Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Coherent Coupling of a Diamond Tin-Vacancy Center to a Tunable Open Microcavity [0.0]
We present a quantum photonic interface based on a single Tin-Vacancy center in a micrometer-thin diamond membrane coupled to a tunable open microcavity.
We observe a transmission dip of 50 % for low incident photon number per Purcell-reduced excited state lifetime, while the dip disappears as the emitter is saturated with higher photon number.
This work establishes a versatile and tunable platform for advanced quantum optics experiments and proof-of-principle demonstrations towards quantum networking with solid-state qubits.
arXiv Detail & Related papers (2023-11-14T19:00:02Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Cavity Quantum Electrodynamics Design with Single Photon Emitters in
Hexagonal Boron Nitride [6.352389759470726]
We numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating defect-enabled single photon emitters in h-BN microdisk resonators.
The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously.
This study contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources.
arXiv Detail & Related papers (2021-06-05T21:53:44Z) - Quantum photonics in triangular-cross-section nanodevices in silicon
carbide [4.26174272406905]
Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates.
We analyze optimal color center positioning within the modes of these devices.
We observe polariton and subradiant state formation in the cavity-protected regime of cavity quantum electrodynamics.
arXiv Detail & Related papers (2020-12-04T01:01:30Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.