Topological Measurement of Deep Neural Networks Using Persistent
Homology
- URL: http://arxiv.org/abs/2106.03016v1
- Date: Sun, 6 Jun 2021 03:06:15 GMT
- Title: Topological Measurement of Deep Neural Networks Using Persistent
Homology
- Authors: Satoru Watanabe, Hayato Yamana
- Abstract summary: The inner representation of deep neural networks (DNNs) is indecipherable.
Persistent homology (PH) was employed for investigating the complexities of trained DNNs.
- Score: 0.7919213739992464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inner representation of deep neural networks (DNNs) is indecipherable,
which makes it difficult to tune DNN models, control their training process,
and interpret their outputs. In this paper, we propose a novel approach to
investigate the inner representation of DNNs through topological data analysis
(TDA). Persistent homology (PH), one of the outstanding methods in TDA, was
employed for investigating the complexities of trained DNNs. We constructed
clique complexes on trained DNNs and calculated the one-dimensional PH of DNNs.
The PH reveals the combinational effects of multiple neurons in DNNs at
different resolutions, which is difficult to be captured without using PH.
Evaluations were conducted using fully connected networks (FCNs) and networks
combining FCNs and convolutional neural networks (CNNs) trained on the MNIST
and CIFAR-10 data sets. Evaluation results demonstrate that the PH of DNNs
reflects both the excess of neurons and problem difficulty, making PH one of
the prominent methods for investigating the inner representation of DNNs.
Related papers
- Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - Learning Ability of Interpolating Deep Convolutional Neural Networks [28.437011792990347]
We study the learning ability of an important family of deep neural networks, deep convolutional neural networks (DCNNs)
We show that by adding well-defined layers to a non-interpolating DCNN, we can obtain some interpolating DCNNs that maintain the good learning rates of the non-interpolating DCNN.
Our work provides theoretical verification of how overfitted DCNNs generalize well.
arXiv Detail & Related papers (2022-10-25T17:22:31Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Deep Learning in Spiking Phasor Neural Networks [0.6767885381740952]
Spiking Neural Networks (SNNs) have attracted the attention of the deep learning community for use in low-latency, low-power neuromorphic hardware.
In this paper, we introduce Spiking Phasor Neural Networks (SPNNs)
SPNNs are based on complex-valued Deep Neural Networks (DNNs), representing phases by spike times.
arXiv Detail & Related papers (2022-04-01T15:06:15Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - NINNs: Nudging Induced Neural Networks [0.0]
New algorithms called nudging induced neural networks (NINNs) to control and improve the accuracy of deep neural networks (DNNs)
NINNs work by adding a feedback control term to the forward propagation of the network.
Rigorous convergence analysis is established for NINNs.
arXiv Detail & Related papers (2022-03-15T14:29:26Z) - Strengthening the Training of Convolutional Neural Networks By Using
Walsh Matrix [0.0]
We have modified the training and structure of DNN to increase the classification performance.
A minimum distance network (MDN) following the last layer of the convolutional neural network (CNN) is used as the classifier.
In different areas, it has been observed that a higher classification performance was obtained by using the DivFE with less number of nodes.
arXiv Detail & Related papers (2021-03-31T18:06:11Z) - Spiking Neural Networks with Single-Spike Temporal-Coded Neurons for
Network Intrusion Detection [6.980076213134383]
Spiking neural network (SNN) is interesting due to its strong bio-plausibility and high energy efficiency.
However, its performance is falling far behind conventional deep neural networks (DNNs)
arXiv Detail & Related papers (2020-10-15T14:46:18Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - Architecture Disentanglement for Deep Neural Networks [174.16176919145377]
We introduce neural architecture disentanglement (NAD) to explain the inner workings of deep neural networks (DNNs)
NAD learns to disentangle a pre-trained DNN into sub-architectures according to independent tasks, forming information flows that describe the inference processes.
Results show that misclassified images have a high probability of being assigned to task sub-architectures similar to the correct ones.
arXiv Detail & Related papers (2020-03-30T08:34:33Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.