論文の概要: Feature-based Style Randomization for Domain Generalization
- arxiv url: http://arxiv.org/abs/2106.03171v1
- Date: Sun, 6 Jun 2021 16:34:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:04:36.954292
- Title: Feature-based Style Randomization for Domain Generalization
- Title(参考訳): 領域一般化のための特徴ベーススタイルランダム化
- Authors: Yue Wang, Lei Qi, Yinghuan Shi, Yang Gao
- Abstract要約: ドメイン一般化(Domain Generalization、DG)は、まず複数のソースドメイン上のジェネリックモデルを学習し、その後、追加の適応なしに任意の未確認ターゲットドメインに直接一般化することを目的としている。
本稿では,機能レベルの拡張を実現するために,シンプルだが効果的な特徴ベーススタイルのランダム化モジュールを開発する。
既存の画像レベルの拡張と比較して、我々の特徴レベルの拡張は、よりゴール指向でサンプルの多様性のある方法を好む。
- 参考スコア(独自算出の注目度): 27.15070576861912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a recent noticeable topic, domain generalization (DG) aims to first learn
a generic model on multiple source domains and then directly generalize to an
arbitrary unseen target domain without any additional adaption. In previous DG
models, by generating virtual data to supplement observed source domains, the
data augmentation based methods have shown its effectiveness. To simulate the
possible unseen domains, most of them enrich the diversity of original data via
image-level style transformation. However, we argue that the potential styles
are hard to be exhaustively illustrated and fully augmented due to the limited
referred styles, leading the diversity could not be always guaranteed. Unlike
image-level augmentation, we in this paper develop a simple yet effective
feature-based style randomization module to achieve feature-level augmentation,
which can produce random styles via integrating random noise into the original
style. Compared with existing image-level augmentation, our feature-level
augmentation favors a more goal-oriented and sample-diverse way. Furthermore,
to sufficiently explore the efficacy of the proposed module, we design a novel
progressive training strategy to enable all parameters of the network to be
fully trained. Extensive experiments on three standard benchmark datasets,
i.e., PACS, VLCS and Office-Home, highlight the superiority of our method
compared to the state-of-the-art methods.
- Abstract(参考訳): 最近の注目に値するトピックとして、ドメイン一般化(DG)は、まず複数のソースドメイン上のジェネリックモデルを学習し、その後、追加の適応なしに任意の未確認ターゲットドメインに直接一般化することを目的としている。
従来のDGモデルでは、観測されたソースドメインを補完する仮想データを生成することで、データ拡張に基づく手法の有効性が示されている。
見えない領域をシミュレートするために、その多くは画像レベルの変換によって元のデータの多様性を高める。
しかし,本研究では,参照スタイルが限定されているため,潜在的なスタイルを網羅的に説明することは困難であり,必ずしも多様性を保証できない。
本稿では,画像レベルの拡張とは違って,特徴レベルの拡張を実現するための,シンプルで効果的な特徴ベースのランダム化モジュールを開発し,ランダムノイズを元のスタイルに統合することでランダムなスタイルを生成できる。
既存の画像レベルの拡張と比較して、我々の機能レベルの拡張は、よりゴール指向でサンプル多様性の方法を好む。
さらに,提案モジュールの有効性を十分に検討するために,ネットワークの全パラメータを十分に訓練できるように,新たなプログレッシブトレーニング戦略を設計する。
PACS、VLCS、Office-Homeという3つの標準ベンチマークデータセットに対する大規模な実験は、最先端の手法と比較して、我々の手法の優位性を強調している。
関連論文リスト
- Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation [1.93061220186624]
ドメイン不変表現学習は、ドメイン一般化の強力な方法である。
従来のアプローチでは、高い計算要求、トレーニングの不安定性、高次元データによる限られた有効性といった課題に直面していた。
本研究では,分布空間を探索しながら分布外サンプルを生成する適応的特徴ブレンディング(AFB)手法を提案する。
論文 参考訳(メタデータ) (2024-11-22T12:06:24Z) - Causality-inspired Latent Feature Augmentation for Single Domain Generalization [13.735443005394773]
単一ドメインの一般化(Single-DG)は、単一のトレーニングドメインのみを持つ一般化可能なモデルを開発し、他の未知のターゲットドメインでうまく機能させることを目的としている。
ドメイン・ハングリー構成の下で、ソース・ドメインのカバレッジを拡大し、異なる分布にまたがる固有の因果的特徴を見つける方法がモデルの一般化能力を高める鍵となる。
本稿では、因果学習と介入に基づく特徴レベルの変換のメタ知識を学習することで、単一DGの因果性に着想を得た潜在機能拡張手法を提案する。
論文 参考訳(メタデータ) (2024-06-10T02:42:25Z) - Diverse Intra- and Inter-Domain Activity Style Fusion for Cross-Person Generalization in Activity Recognition [8.850516669999292]
既存の領域一般化手法は、ドメイン内およびドメイン間スタイルの多様性を捉える際にしばしば困難に直面する。
本稿では,ドメインの多様性を高めるために,ドメインパディングとして概念化されたプロセスを提案する。
データ生成の多様性を高めるために,スタイル融合サンプリング戦略を導入する。
本手法は, 人間の活動認識タスクにおいて, 最先端のDG手法より優れる。
論文 参考訳(メタデータ) (2024-06-07T03:37:30Z) - StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
単一のドメインの一般化(単一DG)は、単一のトレーニングドメインからのみ見えないドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
最先端のアプローチは、主に新しいデータを合成するために、敵対的な摂動やスタイルの強化といったデータ拡張に頼っている。
データ拡張の過程で、ソースと擬似ドメインのアライメントを明示的に考慮したemphStyDeStyを提案する。
論文 参考訳(メタデータ) (2024-06-01T02:41:34Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Learning to Augment via Implicit Differentiation for Domain
Generalization [107.9666735637355]
ドメイン一般化(DG)は、複数のソースドメインを活用してドメイン一般化可能なモデルを学ぶことで、この問題を克服することを目的としている。
本稿では,AugLearnと呼ばれる新しい拡張型DG手法を提案する。
AugLearnは、PACS、Office-Home、Digits-DGの3つの標準DGベンチマークで効果を示す。
論文 参考訳(メタデータ) (2022-10-25T18:51:51Z) - Federated Domain Generalization for Image Recognition via Cross-Client
Style Transfer [60.70102634957392]
ドメイン一般化(Domain Generalization, DG)は、画像認識においてホットなトピックであり、目に見えないドメインでうまく機能する一般的なモデルを訓練することを目的としている。
本稿では,データサンプルを交換することなく,クロスクライアント型転送(CCST)による画像認識のための新しい領域一般化手法を提案する。
本手法は2つのDGベンチマーク(PACS, OfficeHome)とFL設定における大規模医用画像データセット(Camelyon17)において,最近のSOTA DG法より優れている。
論文 参考訳(メタデータ) (2022-10-03T13:15:55Z) - Style Interleaved Learning for Generalizable Person Re-identification [69.03539634477637]
DG ReIDトレーニングのための新しいスタイルインターリーブラーニング(IL)フレームワークを提案する。
従来の学習戦略とは異なり、ILには2つの前方伝播と1つの後方伝播が組み込まれている。
我々のモデルはDG ReIDの大規模ベンチマークにおいて最先端の手法を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2022-07-07T07:41:32Z) - Improving Diversity with Adversarially Learned Transformations for
Domain Generalization [81.26960899663601]
本稿では、ニューラルネットワークを用いた逆学習変換(ALT)を用いて、可塑性かつハードな画像変換をモデル化する新しいフレームワークを提案する。
我々は、ALTが既存の多様性モジュールと自然に連携して、ソースドメインの大規模変換によって最先端のパフォーマンスを実現することを示す。
論文 参考訳(メタデータ) (2022-06-15T18:05:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。