Distributional Reinforcement Learning with Unconstrained Monotonic
Neural Networks
- URL: http://arxiv.org/abs/2106.03228v1
- Date: Sun, 6 Jun 2021 20:03:50 GMT
- Title: Distributional Reinforcement Learning with Unconstrained Monotonic
Neural Networks
- Authors: Thibaut Th\'eate, Antoine Wehenkel, Adrien Bolland, Gilles Louppe and
Damien Ernst
- Abstract summary: The paper introduces a methodology for learning different representations of the random return distribution.
A novel distributional RL algorithm named unconstrained monotonic deep Q-network (UMDQN) is presented.
- Score: 7.907645828535088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The distributional reinforcement learning (RL) approach advocates for
representing the complete probability distribution of the random return instead
of only modelling its expectation. A distributional RL algorithm may be
characterised by two main components, namely the representation and
parameterisation of the distribution and the probability metric defining the
loss. This research considers the unconstrained monotonic neural network (UMNN)
architecture, a universal approximator of continuous monotonic functions which
is particularly well suited for modelling different representations of a
distribution (PDF, CDF, quantile function). This property enables the
decoupling of the effect of the function approximator class from that of the
probability metric. The paper firstly introduces a methodology for learning
different representations of the random return distribution. Secondly, a novel
distributional RL algorithm named unconstrained monotonic deep Q-network
(UMDQN) is presented. Lastly, in light of this new algorithm, an empirical
comparison is performed between three probability quasimetrics, namely the
Kullback-Leibler divergence, Cramer distance and Wasserstein distance. The
results call for a reconsideration of all probability metrics in distributional
RL, which contrasts with the dominance of the Wasserstein distance in recent
publications.
Related papers
- A Stein Gradient Descent Approach for Doubly Intractable Distributions [5.63014864822787]
We propose a novel Monte Carlo Stein variational gradient descent (MC-SVGD) approach for inference for doubly intractable distributions.
The proposed method achieves substantial computational gains over existing algorithms, while providing comparable inferential performance for the posterior distributions.
arXiv Detail & Related papers (2024-10-28T13:42:27Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Reward-Directed Score-Based Diffusion Models via q-Learning [8.725446812770791]
We propose a new reinforcement learning (RL) formulation for training continuous-time score-based diffusion models for generative AI.
Our formulation does not involve any pretrained model for the unknown score functions of the noise-perturbed data distributions.
arXiv Detail & Related papers (2024-09-07T13:55:45Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Learning Theory of Distribution Regression with Neural Networks [6.961253535504979]
We establish an approximation theory and a learning theory of distribution regression via a fully connected neural network (FNN)
In contrast to the classical regression methods, the input variables of distribution regression are probability measures.
arXiv Detail & Related papers (2023-07-07T09:49:11Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
We propose a data-driven, closure model for Reynolds-averaged Navier-Stokes (RANS) simulations that incorporates aleatoric, model uncertainty.
A fully Bayesian formulation is proposed, combined with a sparsity-inducing prior in order to identify regions in the problem domain where the parametric closure is insufficient.
arXiv Detail & Related papers (2023-07-05T16:53:31Z) - Policy Evaluation in Distributional LQR [70.63903506291383]
We provide a closed-form expression of the distribution of the random return.
We show that this distribution can be approximated by a finite number of random variables.
Using the approximate return distribution, we propose a zeroth-order policy gradient algorithm for risk-averse LQR.
arXiv Detail & Related papers (2023-03-23T20:27:40Z) - Distributional Reinforcement Learning for Multi-Dimensional Reward
Functions [91.88969237680669]
We introduce Multi-Dimensional Distributional DQN (MD3QN) to model the joint return distribution from multiple reward sources.
As a by-product of joint distribution modeling, MD3QN can capture the randomness in returns for each source of reward.
In experiments, our method accurately models the joint return distribution in environments with richly correlated reward functions.
arXiv Detail & Related papers (2021-10-26T11:24:23Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
We formulate a method that learns a finite set of statistics from each return distribution via neural networks.
Our method can be interpreted as implicitly matching all orders of moments between a return distribution and its Bellman target.
Experiments on the suite of Atari games show that our method outperforms the standard distributional RL baselines.
arXiv Detail & Related papers (2020-07-24T05:18:17Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes.
We show that value-based methods such as TD($lambda$) and $Q$-Learning have update rules which are contractive in the space of distributions of functions.
arXiv Detail & Related papers (2020-03-27T05:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.