Antipodes of Label Differential Privacy: PATE and ALIBI
- URL: http://arxiv.org/abs/2106.03408v1
- Date: Mon, 7 Jun 2021 08:14:32 GMT
- Title: Antipodes of Label Differential Privacy: PATE and ALIBI
- Authors: Mani Malek, Ilya Mironov, Karthik Prasad, Igor Shilov, Florian
Tram\`er
- Abstract summary: We consider the privacy-preserving machine learning (ML) setting where the trained model must satisfy differential privacy (DP)
We propose two novel approaches based on, respectively, the Laplace mechanism and the PATE framework.
We show how to achieve very strong privacy levels in some regimes, with our adaptation of the PATE framework.
- Score: 2.2761657094500682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the privacy-preserving machine learning (ML) setting where the
trained model must satisfy differential privacy (DP) with respect to the labels
of the training examples. We propose two novel approaches based on,
respectively, the Laplace mechanism and the PATE framework, and demonstrate
their effectiveness on standard benchmarks.
While recent work by Ghazi et al. proposed Label DP schemes based on a
randomized response mechanism, we argue that additive Laplace noise coupled
with Bayesian inference (ALIBI) is a better fit for typical ML tasks. Moreover,
we show how to achieve very strong privacy levels in some regimes, with our
adaptation of the PATE framework that builds on recent advances in
semi-supervised learning.
We complement theoretical analysis of our algorithms' privacy guarantees with
empirical evaluation of their memorization properties. Our evaluation suggests
that comparing different algorithms according to their provable DP guarantees
can be misleading and favor a less private algorithm with a tighter analysis.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Enhancing Trade-offs in Privacy, Utility, and Computational Efficiency through MUltistage Sampling Technique (MUST) [3.0939420223851446]
We propose a class of subsampling methods for privacy amplification (PA)
We conduct comprehensive analyses of the PA effects and utility for several 2-stage MUST procedures.
We provide the privacy loss composition analysis over repeated applications of MUST.
arXiv Detail & Related papers (2023-12-20T19:38:29Z) - Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A Unified Framework for Privacy-Preserving Distributed Average Consensus [6.364764301218972]
We propose a general approach named adaptive differentially quantized subspace (ADQSP)
We show that by varying a single quantization parameter the proposed method can vary between SMPC-type performances and DP-type performances.
Our results show the potential of exploiting traditional distributed signal processing tools for providing cryptographic guarantees.
arXiv Detail & Related papers (2023-12-13T07:52:16Z) - Practical Privacy-Preserving Gaussian Process Regression via Secret
Sharing [23.80837224347696]
This paper proposes a privacy-preserving GPR method based on secret sharing (SS)
We derive a new SS-based exponentiation operation through the idea of 'confusion-correction' and construct an SS-based matrix inversion algorithm based on Cholesky decomposition.
Empirical results show that our proposed method can achieve reasonable accuracy and efficiency under the premise of preserving data privacy.
arXiv Detail & Related papers (2023-06-26T08:17:51Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Regression with Label Differential Privacy [64.21020761920322]
We derive a label DP randomization mechanism that is optimal under a given regression loss function.
We prove that the optimal mechanism takes the form of a "randomized response on bins"
arXiv Detail & Related papers (2022-12-12T17:41:32Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Private Alternating Least Squares: Practical Private Matrix Completion
with Tighter Rates [34.023599653814415]
We study the problem of differentially private (DP) matrix completion under user-level privacy.
We design a joint differentially private variant of the popular Alternating-Least-Squares (ALS) method.
arXiv Detail & Related papers (2021-07-20T23:19:11Z) - Local Differential Privacy for Bayesian Optimization [12.05395706770007]
We consider a black-box optimization in the nonparametric Gaussian process setting with local differential privacy (LDP) guarantee.
Specifically, the rewards from each user are further corrupted to protect privacy and the learner only has access to the corrupted rewards to minimize the regret.
We present three almost optimal algorithms based on the GP-UCB framework and Laplace DP mechanism.
arXiv Detail & Related papers (2020-10-13T21:50:09Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints.
We also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets.
arXiv Detail & Related papers (2020-08-21T18:43:37Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.