論文の概要: Graph Neural Networks in Network Neuroscience
- arxiv url: http://arxiv.org/abs/2106.03535v1
- Date: Mon, 7 Jun 2021 11:49:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 17:30:53.739425
- Title: Graph Neural Networks in Network Neuroscience
- Title(参考訳): ネットワーク神経科学におけるグラフニューラルネットワーク
- Authors: Alaa Bessadok, Mohamed Ali Mahjoub and Islem Rekik
- Abstract要約: グラフニューラルネットワーク(GNN)は、ディープグラフ構造を学ぶための巧妙な方法を提供する。
GNNベースの手法は、脳グラフ合成の欠如や疾患の分類など、脳グラフに関連するいくつかのアプリケーションで使用されている。
神経疾患の診断と集団グラフ統合のためのネットワーク神経科学分野におけるGNNモデルのより良い応用に向けての道筋をグラフ化して結論付ける。
- 参考スコア(独自算出の注目度): 1.6114012813668934
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Noninvasive medical neuroimaging has yielded many discoveries about the brain
connectivity. Several substantial techniques mapping morphological, structural
and functional brain connectivities were developed to create a comprehensive
road map of neuronal activities in the human brain -namely brain graph. Relying
on its non-Euclidean data type, graph neural network (GNN) provides a clever
way of learning the deep graph structure and it is rapidly becoming the
state-of-the-art leading to enhanced performance in various network
neuroscience tasks. Here we review current GNN-based methods, highlighting the
ways that they have been used in several applications related to brain graphs
such as missing brain graph synthesis and disease classification. We conclude
by charting a path toward a better application of GNN models in network
neuroscience field for neurological disorder diagnosis and population graph
integration. The list of papers cited in our work is available at
https://github.com/basiralab/GNNs-in-Network-Neuroscience.
- Abstract(参考訳): 非侵襲的な医療用ニューロイメージングは、脳の接続性に関する多くの発見をもたらした。
形態学的、構造的、機能的な脳の結合性をマッピングするいくつかの重要な技術が開発され、人間の脳内の神経活動の包括的なロードマップ、すなわち脳グラフが作られた。
非ユークリッドデータ型に依存するグラフニューラルネットワーク(gnn)は、ディープグラフ構造を学ぶための巧妙な方法を提供すると同時に、さまざまなネットワークニューロサイエンスタスクのパフォーマンス向上につながる最先端技術になりつつある。
ここでは、現在のGNNベースの手法を概観し、脳グラフ合成の欠如や疾患分類など、脳グラフに関連するいくつかのアプリケーションで使用されている方法について述べる。
神経疾患の診断と集団グラフ統合のためのネットワーク神経科学分野におけるGNNモデルのより良い応用に向けての道筋をグラフ化して結論付ける。
私たちの研究で引用された論文のリストはhttps://github.com/basiralab/GNNs-in-Network-Neuroscience.comで公開されている。
関連論文リスト
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Visualizing Deep Neural Networks with Topographic Activation Maps [1.1470070927586014]
我々は,ディープニューラルネットワーク層におけるニューロンの地形的レイアウトを求める手法を紹介し,比較する。
本研究では,地形のアクティベーションマップを用いて誤りの特定やバイアスのエンコードを行い,トレーニングプロセスの可視化を行う。
論文 参考訳(メタデータ) (2022-04-07T15:56:44Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - BrainGB: A Benchmark for Brain Network Analysis with Graph Neural
Networks [20.07976837999997]
グラフニューラルネットワーク(GNN)を用いた脳ネットワーク解析のためのベンチマークであるBrainGBを提案する。
BrainGBは脳ネットワーク構築パイプラインを機能的および構造的ニューロイメージングの両方に標準化する。
脳ネットワーク上での効果的なGNN設計のための一般的なレシピセットを推奨する。
論文 参考訳(メタデータ) (2022-03-17T08:31:13Z) - Joint Embedding of Structural and Functional Brain Networks with Graph
Neural Networks for Mental Illness Diagnosis [17.48272758284748]
グラフニューラルネットワーク(GNN)は,グラフ構造化データを解析するためのデファクトモデルとなっている。
我々はマルチモーダル脳ネットワークのための新しいマルチビューGNNを開発した。
特に、各モダリティを脳ネットワークの視点とみなし、マルチモーダル融合のためのコントラスト学習を採用する。
論文 参考訳(メタデータ) (2021-07-07T13:49:57Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。