論文の概要: Joint Embedding of Structural and Functional Brain Networks with Graph
Neural Networks for Mental Illness Diagnosis
- arxiv url: http://arxiv.org/abs/2107.03220v1
- Date: Wed, 7 Jul 2021 13:49:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-08 13:50:46.034635
- Title: Joint Embedding of Structural and Functional Brain Networks with Graph
Neural Networks for Mental Illness Diagnosis
- Title(参考訳): グラフニューラルネットワークを用いた精神疾患診断のための構造的・機能的脳ネットワークの組込み
- Authors: Yanqiao Zhu, Hejie Cui, Lifang He, Lichao Sun, Carl Yang
- Abstract要約: グラフニューラルネットワーク(GNN)は,グラフ構造化データを解析するためのデファクトモデルとなっている。
我々はマルチモーダル脳ネットワークのための新しいマルチビューGNNを開発した。
特に、各モダリティを脳ネットワークの視点とみなし、マルチモーダル融合のためのコントラスト学習を採用する。
- 参考スコア(独自算出の注目度): 17.48272758284748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal brain networks characterize complex connectivities among different
brain regions from both structural and functional aspects and provide a new
means for mental disease analysis. Recently, Graph Neural Networks (GNNs) have
become a de facto model for analyzing graph-structured data. However, how to
employ GNNs to extract effective representations from brain networks in
multiple modalities remains rarely explored. Moreover, as brain networks
provide no initial node features, how to design informative node attributes and
leverage edge weights for GNNs to learn is left unsolved. To this end, we
develop a novel multiview GNN for multimodal brain networks. In particular, we
regard each modality as a view for brain networks and employ contrastive
learning for multimodal fusion. Then, we propose a GNN model which takes
advantage of the message passing scheme by propagating messages based on degree
statistics and brain region connectivities. Extensive experiments on two
real-world disease datasets (HIV and Bipolar) demonstrate the effectiveness of
our proposed method over state-of-the-art baselines.
- Abstract(参考訳): マルチモーダル脳ネットワークは、構造的および機能的側面から異なる脳領域間の複雑な結合性を特徴付け、精神疾患解析のための新しい手段を提供する。
近年,グラフニューラルネットワーク(GNN)は,グラフ構造化データのデファクトモデルとなっている。
しかし、複数のモーダルで脳ネットワークから効果的な表現を抽出するためにGNNを用いる方法はほとんど研究されていない。
さらに、脳ネットワークは初期ノード機能を提供しないため、情報ノード属性を設計し、学習するGNNのエッジウェイトを活用する方法は未解決のままである。
そこで我々は,マルチモーダル脳ネットワークのための新しいマルチビューGNNを開発した。
特に,各モダリティを脳ネットワークの視点として捉え,マルチモーダル融合のためのコントラスト学習を用いる。
そこで本研究では,次数統計と脳領域の接続性に基づくメッセージ伝達方式を応用したGNNモデルを提案する。
実世界の2つの疾患データセット(HIVとバイポーラ)に対する大規模な実験により,提案手法が最先端のベースラインに対して有効であることを実証した。
関連論文リスト
- Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのマイニングにおいて大きな優位性を示している。
脳障害解析のための脳グラフ表現を学習するGNNが最近注目を集めている。
本稿では,GNNを利用した脳グラフ学習の成果をレビューすることで,このギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T02:47:39Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
我々は最近,サンプル共分散行列で動作する共分散ニューラルネットワーク(VNN)について検討した。
本稿では,大脳皮質厚みデータを用いた脳年齢推定におけるVNNの有用性を示す。
以上の結果から、VNNは脳年齢推定のためのマルチスケールおよびマルチサイト転送性を示すことが明らかとなった。
アルツハイマー病(AD)の脳年齢の文脈では,健常者に対してVNNを用いて予測される脳年齢がADに対して有意に上昇していることから,VNNの出力は解釈可能であることが示された。
論文 参考訳(メタデータ) (2022-10-28T18:58:34Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
本稿では、障害特異的な関心領域(ROI)と顕著なつながりを分析するための解釈可能なフレームワークを提案する。
提案するフレームワークは,脳ネットワーク指向の疾患予測のためのバックボーンモデルと,グローバルに共有された説明生成装置の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2022-06-30T08:02:05Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - BrainGB: A Benchmark for Brain Network Analysis with Graph Neural
Networks [20.07976837999997]
グラフニューラルネットワーク(GNN)を用いた脳ネットワーク解析のためのベンチマークであるBrainGBを提案する。
BrainGBは脳ネットワーク構築パイプラインを機能的および構造的ニューロイメージングの両方に標準化する。
脳ネットワーク上での効果的なGNN設計のための一般的なレシピセットを推奨する。
論文 参考訳(メタデータ) (2022-03-17T08:31:13Z) - Graph Neural Networks in Network Neuroscience [1.6114012813668934]
グラフニューラルネットワーク(GNN)は、ディープグラフ構造を学ぶための巧妙な方法を提供する。
GNNベースの手法は、脳グラフ合成の欠如や疾患の分類など、脳グラフに関連するいくつかのアプリケーションで使用されている。
神経疾患の診断と集団グラフ統合のためのネットワーク神経科学分野におけるGNNモデルのより良い応用に向けての道筋をグラフ化して結論付ける。
論文 参考訳(メタデータ) (2021-06-07T11:49:57Z) - Deep Representation Learning For Multimodal Brain Networks [9.567489601729328]
本稿では,マルチモーダル脳ネットワークを融合させるために,エンドツーエンドの深層グラフ表現学習(Deep Multimodal Brain Networks - DMBN)を提案する。
脳構造ネットワークから機能ネットワークへの高階ネットワークマッピングはノード領域で学習される。
実験結果は,提案手法が他の最先端の深層脳ネットワークモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-07-19T20:32:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。