論文の概要: Document-level Relation Extraction as Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2106.03618v1
- Date: Mon, 7 Jun 2021 13:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:13:59.490994
- Title: Document-level Relation Extraction as Semantic Segmentation
- Title(参考訳): 意味セグメンテーションとしての文書レベル関係抽出
- Authors: Ningyu Zhang, Xiang Chen, Xin Xie, Shumin Deng, Chuanqi Tan, Mosha
Chen, Fei Huang, Luo Si, Huajun Chen
- Abstract要約: 文書レベルの関係抽出は、文書から複数のエンティティペア間の関係を抽出することを目的としている。
本稿では,局所的およびグローバルな情報を取得するために,エンティティレベルの関係行列を予測することで,この問題に対処する。
文書レベルの関係抽出のための文書U字型ネットワークを提案する。
- 参考スコア(独自算出の注目度): 38.614931876015625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level relation extraction aims to extract relations among multiple
entity pairs from a document. Previously proposed graph-based or
transformer-based models utilize the entities independently, regardless of
global information among relational triples. This paper approaches the problem
by predicting an entity-level relation matrix to capture local and global
information, parallel to the semantic segmentation task in computer vision.
Herein, we propose a Document U-shaped Network for document-level relation
extraction. Specifically, we leverage an encoder module to capture the context
information of entities and a U-shaped segmentation module over the image-style
feature map to capture global interdependency among triples. Experimental
results show that our approach can obtain state-of-the-art performance on three
benchmark datasets DocRED, CDR, and GDA.
- Abstract(参考訳): 文書レベルの関係抽出は、文書から複数のエンティティペア間の関係を抽出することを目的としている。
従来提案されたグラフベースモデルやトランスフォーマーベースモデルは、関係三重項のグローバル情報にかかわらず、エンティティを独立して利用する。
本稿では,コンピュータビジョンにおける意味セグメンテーションタスクと並行して,エンティティレベルの関係行列を予測し,局所的および大域的な情報をキャプチャする。
本稿では,文書レベルの関係抽出のための文書U字型ネットワークを提案する。
具体的には、エンコーダモジュールを利用してエンティティのコンテキスト情報をキャプチャし、イメージスタイルの特徴マップ上にU字型のセグメンテーションモジュールを配置し、トリプル間のグローバル相互依存性をキャプチャする。
実験結果から, DocRED, CDR, GDAの3つのベンチマークデータに対して, 最先端の性能が得られることがわかった。
関連論文リスト
- A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument extract (DEAE)は、構造化されていないドキュメントから引数とその特定の役割を特定することを目的としている。
DEAEの先進的なアプローチは、事前訓練された言語モデル(PLM)を誘導するプロンプトベースの手法を用いて、入力文書から引数を抽出する。
本稿では,この2つの問題に対処するために,グラフ拡張モデル (GAM) のセマンティック言及を提案する。
論文 参考訳(メタデータ) (2024-03-12T08:58:07Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
マルチモーダルエンティティリンクタスクは、マルチモーダル知識グラフへの曖昧な言及を解決することを目的としている。
MELタスクを解決するための新しいMulti-Grained Multimodal InteraCtion Network $textbf(MIMIC)$ frameworkを提案する。
論文 参考訳(メタデータ) (2023-07-19T02:11:19Z) - ReSel: N-ary Relation Extraction from Scientific Text and Tables by
Learning to Retrieve and Select [53.071352033539526]
学術論文からN-ary関係を抽出する問題について考察する。
提案手法であるReSelは,このタスクを2段階のプロシージャに分解する。
3つの科学的情報抽出データセットに対する実験により、ReSelは最先端のベースラインを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-10-26T02:28:02Z) - A Masked Image Reconstruction Network for Document-level Relation
Extraction [3.276435438007766]
文書レベルの関係抽出は、複雑な3重関係を抽出するために複数の文に対する推論を必要とする。
マスク付き画像再構成ネットワーク(DRE-MIR)に基づく文書レベルの関係抽出モデルを提案する。
我々は,3つの公開文書レベルの関係抽出データセットについて,そのモデルを評価する。
論文 参考訳(メタデータ) (2022-04-21T02:41:21Z) - Global-and-Local Collaborative Learning for Co-Salient Object Detection [162.62642867056385]
Co-Salient Object Detection (CoSOD)の目標は、2つ以上の関連する画像を含むクエリグループに一般的に現れる有能なオブジェクトを見つけることである。
本稿では,グローバル対応モデリング(GCM)とローカル対応モデリング(LCM)を含む,グローバル・ローカル協調学習アーキテクチャを提案する。
提案したGLNetは3つの一般的なCoSODベンチマークデータセットに基づいて評価され、我々のモデルが小さなデータセット(約3k画像)でトレーニングされた場合、一部の大規模データセット(約8k-200k画像)でトレーニングされた11の最先端の競合製品(約8k-200k画像)を上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-19T14:32:41Z) - An End-to-end Model for Entity-level Relation Extraction using
Multi-instance Learning [2.111790330664657]
本稿では,文書からのエンティティレベルの関係抽出のための共同モデルを提案する。
DocREDデータセットから最先端関係抽出結果を得る。
実験結果から,共同学習はタスク固有の学習と同等であるが,共有パラメータや学習手順によりより効率的であることが示唆された。
論文 参考訳(メタデータ) (2021-02-11T12:49:39Z) - Coarse-to-Fine Entity Representations for Document-level Relation
Extraction [28.39444850200523]
文書レベルの関係抽出(RE: Document-level Relation extract)は、文内および文間で表現される関係を抽出する必要がある。
最近の研究は、通常文書レベルの相互作用をキャプチャする文書レベルのグラフを構築するグラフベースの手法が有用なエンティティ表現を得ることができることを示している。
粗大な戦略を採用する textbfCoarse-to-textbfFine textbfEntity textbfRepresentation model (textbfCFER) を提案する。
論文 参考訳(メタデータ) (2020-12-04T10:18:59Z) - CoADNet: Collaborative Aggregation-and-Distribution Networks for
Co-Salient Object Detection [91.91911418421086]
Co-Salient Object Detection (CoSOD)は、2つ以上の関連する画像を含む所定のクエリグループに繰り返し現れる健全なオブジェクトを発見することを目的としている。
課題の1つは、画像間の関係をモデリングし、活用することによって、コ・サリヤ・キューを効果的にキャプチャする方法である。
我々は,複数画像から有能かつ反復的な視覚パターンを捉えるために,エンドツーエンドの協調集約配信ネットワーク(CoADNet)を提案する。
論文 参考訳(メタデータ) (2020-11-10T04:28:11Z) - Global-to-Local Neural Networks for Document-Level Relation Extraction [11.900280120655898]
関係抽出(RE)は、テキスト内の名前付きエンティティ間の意味的関係を特定することを目的としている。
近年、文書のレベルに引き上げられるのを目撃しており、エンティティとの複雑な推論とドキュメント全体への言及が必要である。
本稿では,文書情報を大域的・局所的表現と文脈関係表現の両面から符号化することで,文書レベルのREに新たなモデルを提案する。
論文 参考訳(メタデータ) (2020-09-22T07:30:19Z) - Bidirectional Graph Reasoning Network for Panoptic Segmentation [126.06251745669107]
本稿では,BGRNet(Bidirectional Graph Reasoning Network)を導入し,前景物と背景物間のモジュラー内およびモジュラー間関係について検討する。
BGRNetはまず、インスタンスとセマンティックセグメンテーションの両方でイメージ固有のグラフを構築し、提案レベルとクラスレベルで柔軟な推論を可能にする。
論文 参考訳(メタデータ) (2020-04-14T02:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。