論文の概要: Fair Feature Distillation for Visual Recognition
- arxiv url: http://arxiv.org/abs/2106.04411v2
- Date: Thu, 10 Jun 2021 13:55:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-13 13:58:57.182782
- Title: Fair Feature Distillation for Visual Recognition
- Title(参考訳): 視覚認識のための高機能蒸留
- Authors: Sangwon Jung, Donggyu Lee, Taeeon Park and Taesup Moon
- Abstract要約: 視覚認識タスクのための特徴蒸留によるアルゴリズムバイアスを低減する体系的なアプローチを考案する。
MFDは、合成と実世界の両方の顔データセットの精度を損なうことなく、特定のマイノリティに対する偏見を著しく軽減することを示す。
- 参考スコア(独自算出の注目度): 16.440434996206626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness is becoming an increasingly crucial issue for computer vision,
especially in the human-related decision systems. However, achieving
algorithmic fairness, which makes a model produce indiscriminative outcomes
against protected groups, is still an unresolved problem. In this paper, we
devise a systematic approach which reduces algorithmic biases via feature
distillation for visual recognition tasks, dubbed as MMD-based Fair
Distillation (MFD). While the distillation technique has been widely used in
general to improve the prediction accuracy, to the best of our knowledge, there
has been no explicit work that also tries to improve fairness via distillation.
Furthermore, We give a theoretical justification of our MFD on the effect of
knowledge distillation and fairness. Throughout the extensive experiments, we
show our MFD significantly mitigates the bias against specific minorities
without any loss of the accuracy on both synthetic and real-world face
datasets.
- Abstract(参考訳): 公平さはコンピュータビジョン、特に人間関連の意思決定システムにとってますます重要な問題になりつつある。
しかし、モデルが保護されたグループに対して無差別の結果を生み出すアルゴリズム的公正性を達成することは、まだ未解決の問題である。
本稿では,mmd-based fair distillation (mfd) と呼ばれる視覚認識タスクのための特徴蒸留によるアルゴリズムバイアスを低減する体系的アプローチを提案する。
蒸留技術は一般的に予測精度を向上させるために広く用いられてきたが、我々の知る限りでは、蒸留による公正性向上を図った明確な研究は行われていない。
さらに,我々はmfdの理論的正当化を,知識蒸留と公平性の影響に与えた。
広範な実験を通じて,mfdは,合成データと実世界の顔データセットの両方の精度を損なうことなく,特定のマイノリティに対するバイアスを著しく軽減することを示した。
関連論文リスト
- The Effect of Optimal Self-Distillation in Noisy Gaussian Mixture Model [2.355460994057843]
自己蒸留(英: self-distillation, SD)とは、モデルが自身の予測から自分自身を洗練させる技法である。
広く使われているにもかかわらず、その効果の基盤となるメカニズムはいまだ不明である。
論文 参考訳(メタデータ) (2025-01-27T17:20:48Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
また,有効で堅牢な後処理技術であるBias Pruning with Fair Activations (BPFA)も提案する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - A Generalization Theory of Cross-Modality Distillation with Contrastive Learning [49.35244441141323]
クロスモダリティ蒸留は、限られた知識を含むデータモダリティにとって重要なトピックである。
コントラスト学習に基づくクロスモーダルコントラスト蒸留(CMCD)の一般的な枠組みを定式化する。
我々のアルゴリズムは、様々なモダリティやタスクに対して、2-3%のマージンで既存のアルゴリズムを一貫して上回ります。
論文 参考訳(メタデータ) (2024-05-06T11:05:13Z) - Learning Fairer Representations with FairVIC [0.0]
自動意思決定システムにおけるバイアスの緩和は、公平さとデータセット固有のバイアスのニュアンスな定義のために重要な課題である。
学習中の損失関数に分散項、不変項、共分散項を統合することにより、ニューラルネットワークの公平性を高める革新的なアプローチであるFairVICを導入する。
ベンチマークデータセットにおけるFairVICを,グループと個人の両方の公正性を考慮して比較して評価し,精度と公正性のトレードオフに関するアブレーション研究を行う。
論文 参考訳(メタデータ) (2024-04-28T10:10:21Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
機械学習アプリケーションにおける差別の原因を明らかにするための包括的アプローチを提案する。
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated region。
これにより、各特徴がバイアスに影響を及ぼすかどうかを測定するために強制的公正性を使用する凝集系を導出することができる。
論文 参考訳(メタデータ) (2023-08-22T00:10:23Z) - Toward Fair Facial Expression Recognition with Improved Distribution
Alignment [19.442685015494316]
本稿では,表情認識(FER)モデルにおけるバイアスを軽減する新しい手法を提案する。
本手法は、FERモデルによる埋め込みにおいて、性別、年齢、人種などの機密属性情報を低減することを目的としている。
ferモデルにおいて、魅力の概念を重要な感度属性として分析し、FERモデルがより魅力的な顔に対するバイアスを実際に示できることを実証する。
論文 参考訳(メタデータ) (2023-06-11T14:59:20Z) - Understanding Masked Autoencoders via Hierarchical Latent Variable
Models [109.35382136147349]
Masked Autoencoder (MAE) は近年,様々な視覚タスクにおいて顕著な成功を収めている。
MAEに関する興味深い経験的観察の出現にもかかわらず、理論的に原理化された理解はいまだに欠如している。
論文 参考訳(メタデータ) (2023-06-08T03:00:10Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - Fairness and Explainability: Bridging the Gap Towards Fair Model
Explanations [12.248793742165278]
我々は、説明に基づく手続き指向公正の新たな視点を提示することにより、公正性と説明可能性のギャップを埋める。
本稿では,複数の目的を同時に達成する包括的公正性アルゴリズム (CFA) を提案する。
論文 参考訳(メタデータ) (2022-12-07T18:35:54Z) - Escaping Data Scarcity for High-Resolution Heterogeneous Face
Hallucination [68.78903256687697]
Heterogeneous Face Recognition (HFR) では、視覚や熱といった2つの異なる領域にまたがる顔のマッチングが目的である。
合成によるギャップを埋めようとする最近の手法は有望な結果を得たが、ペアトレーニングデータの不足により、その性能は依然として制限されている。
本稿では,HFRのための新しい顔幻覚パラダイムを提案する。これはデータ効率のよい合成を可能にするだけでなく,プライバシポリシーを破ることなくモデルトレーニングのスケールアップを可能にする。
論文 参考訳(メタデータ) (2022-03-30T20:44:33Z) - Circumventing Outliers of AutoAugment with Knowledge Distillation [102.25991455094832]
AutoAugmentは多くの視覚タスクの精度を向上させる強力なアルゴリズムである。
本論文は作業機構を深く掘り下げ,AutoAugmentがトレーニング画像から識別情報の一部を除去できることを明らかにする。
教師モデルの出力に言及した知識蒸留を用いて,ネットワークトレーニングの指導を行う。
論文 参考訳(メタデータ) (2020-03-25T11:51:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。