Quantum Euler relation for local measurements
- URL: http://arxiv.org/abs/2106.04459v1
- Date: Tue, 8 Jun 2021 15:41:31 GMT
- Title: Quantum Euler relation for local measurements
- Authors: Akram Touil, Kevin Weber, Sebastian Deffner
- Abstract summary: We derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements.
The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In classical thermodynamics the Euler relation is an expression for the
internal energy as a sum of the products of canonical pairs of extensive and
intensive variables. For quantum systems the situation is more intricate, since
one has to account for the effects of the measurement back action. To this end,
we derive a quantum analog of the Euler relation, which is governed by the
information retrieved by local quantum measurements. The validity of the
relation is demonstrated for the collective dissipation model, where we find
that thermodynamic behavior is exhibited in the weak-coupling regime.
Related papers
- Force-current structure in Markovian open quantum systems and its applications: geometric housekeeping-excess decomposition and thermodynamic trade-off relations [0.0]
We show that the entropy production rate is given by the product of the force and current operators.
The framework constitutes a comprehensive analogy with the nonequilibrium thermodynamics of discrete classical systems.
arXiv Detail & Related papers (2024-10-30T01:10:58Z) - Quantum Onsager relations [0.0]
I derive quantum generalizations of the Onsager rate equations, which model the dynamics of an open system near a steady state.
The results establish a remarkable connection between statistical mechanics and parameter estimation theory.
arXiv Detail & Related papers (2024-03-19T16:50:11Z) - Generalized Quantum Fluctuation Theorem for Energy Exchange [3.9826692712219467]
The nonequilibrium fluctuation relation is a cornerstone of quantum thermodynamics.
The Jarzynski-W'ojcik fluctuation theorem is recovered in the weak-coupling limit.
We find the average energy exchange exhibits rich nonequilibrium characteristics when different numbers of system-bath bound states are formed.
arXiv Detail & Related papers (2024-01-28T00:49:11Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Exchange fluctuation theorems for strongly interacting quantum pumps [0.0]
We derive a general quantum exchange fluctuation theorem for multipartite systems with arbitrary coupling strengths.
The resulting second law of thermodynamics is tighter than the conventional Clausius inequality.
arXiv Detail & Related papers (2022-09-26T18:01:59Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Quantum thermodynamics of two bosonic systems [0.0]
We study the energy exchange between two bosonic systems that interact via bilinear transformations in the mode operators.
This work finds its roots in a very recent formulation of quantum thermodynamics.
arXiv Detail & Related papers (2020-01-14T09:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.