論文の概要: ChaCha for Online AutoML
- arxiv url: http://arxiv.org/abs/2106.04815v1
- Date: Wed, 9 Jun 2021 05:20:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 15:04:30.447279
- Title: ChaCha for Online AutoML
- Title(参考訳): オンラインAutoMLのためのChaCha
- Authors: Qingyun Wu, Chi Wang, John Langford, Paul Mineiro, Marco Rossi
- Abstract要約: ChaChaはチャンピオンを決め、ライブのチャレンジャーのセットをスケジューリングするプロセスを処理する。
最適設定を考慮に入れた後、サブ線形後悔が保証される。
- 参考スコア(独自算出の注目度): 32.22279391090932
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose the ChaCha (Champion-Challengers) algorithm for making an online
choice of hyperparameters in online learning settings. ChaCha handles the
process of determining a champion and scheduling a set of `live' challengers
over time based on sample complexity bounds. It is guaranteed to have sublinear
regret after the optimal configuration is added into consideration by an
application-dependent oracle based on the champions. Empirically, we show that
ChaCha provides good performance across a wide array of datasets when
optimizing over featurization and hyperparameter decisions.
- Abstract(参考訳): オンライン学習環境におけるハイパーパラメータのオンライン選択のためのChaCha(Champion-Challengers)アルゴリズムを提案する。
ChaChaは、チャンピオンを決定するプロセスと、サンプルの複雑性境界に基づいて、時間の経過とともに‘生きた’挑戦者のセットをスケジューリングする。
チャンピオンに基づいたアプリケーション依存のオラクルによって最適な設定が考慮に入れられた後、サブ線形後悔が保証される。
経験的に、ChaChaは、成果化とハイパーパラメータ決定を最適化する際に、幅広いデータセットにわたって優れたパフォーマンスを提供する。
関連論文リスト
- Understanding the performance gap between online and offline alignment algorithms [63.137832242488926]
オフラインのアルゴリズムは、ペアの分類が得意になるようにポリシーを訓練し、オンラインのアルゴリズムは世代ごとに良いことを示しています。
このことは、識別能力と生成能力の間のユニークな相互作用を示唆しており、これはサンプリングプロセスに大きく影響している。
我々の研究は、AIアライメントにおけるオンラインサンプリングの重要な役割に光を当て、オフラインアライメントアルゴリズムのある種の根本的な課題を示唆している。
論文 参考訳(メタデータ) (2024-05-14T09:12:30Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
大規模ネットワークにおける最適なソース配置をオンラインで学習するためのグラフカーネルマルチアームバンディットアルゴリズムであるGrab-UCBを提案する。
適応グラフ辞書モデルを用いて,ネットワークプロセスを記述する。
我々は、ネットワークパラメータに依存する性能保証を導出し、シーケンシャルな意思決定戦略の学習曲線にさらに影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-07T15:03:42Z) - Online Continuous Hyperparameter Optimization for Generalized Linear Contextual Bandits [55.03293214439741]
文脈的包帯では、エージェントは過去の経験に基づいた時間依存アクションセットから順次アクションを行う。
そこで本稿では,文脈的包帯のためのオンライン連続型ハイパーパラメータチューニングフレームワークを提案する。
理論上はサブ線形の後悔を達成でき、合成データと実データの両方において既存のすべての手法よりも一貫して優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-02-18T23:31:20Z) - Efficient Online Learning with Memory via Frank-Wolfe Optimization:
Algorithms with Bounded Dynamic Regret and Applications to Control [15.588080817106563]
動的後悔を最小限に抑えるメモリ付きプロジェクションフリーなメタベース学習アルゴリズムを提案する。
私たちは、自律的なエージェントが時間によって変化する環境に適応する必要がある人工知能アプリケーションによって動機付けられています。
論文 参考訳(メタデータ) (2023-01-02T01:12:29Z) - Learning-Assisted Algorithm Unrolling for Online Optimization with
Budget Constraints [27.84415856657607]
我々はLAAU(Learning-Assisted Algorithm Unrolling)と呼ばれる新しい機械学習支援アンローリング手法を提案する。
バックプロパゲーションによる効率的なトレーニングには、時間とともに決定パイプラインの勾配を導出します。
また、トレーニングデータがオフラインで利用可能で、オンラインで収集できる場合の2つのケースの平均的なコスト境界も提供します。
論文 参考訳(メタデータ) (2022-12-03T20:56:29Z) - Adaptive Client Sampling in Federated Learning via Online Learning with
Bandit Feedback [36.05851452151107]
統合学習(FL)システムは、トレーニングの各ラウンドに関与するクライアントのサブセットをサンプリングする必要があります。
その重要性にもかかわらず、クライアントを効果的にサンプリングする方法には制限がある。
提案手法は,最適化アルゴリズムの収束速度をいかに向上させるかを示す。
論文 参考訳(メタデータ) (2021-12-28T23:50:52Z) - Learning Connectivity-Maximizing Network Configurations [123.01665966032014]
本稿では、専門家からコミュニケーションエージェントを配置することを学ぶ畳み込みニューラルネットワーク(CNN)を用いた教師あり学習手法を提案する。
我々は,標準ライントポロジやリングトポロジ,ランダムに生成された105万件のテストケース,トレーニング中に見えない大規模なチームについて,CNNのパフォーマンスを実証した。
トレーニング後,本システムは10~20名のエージェントの最適化手法よりも2桁高速な接続構成を生成する。
論文 参考訳(メタデータ) (2021-12-14T18:59:01Z) - Boosting for Online Convex Optimization [64.15578413206715]
多数の専門家とオンライン凸最適化の意思決定フレームワークを検討します。
弱学習アルゴリズムは、基本クラスの専門家に対するおよその後悔を保証するメカニズムとして定義します。
ベースクラスの凸船体に対するほぼ最適の後悔を保証する効率的なブースティングアルゴリズムを提供します。
論文 参考訳(メタデータ) (2021-02-18T12:30:49Z) - Quantity vs. Quality: On Hyperparameter Optimization for Deep
Reinforcement Learning [7.559006677497745]
強化学習アルゴリズムは、異なるランダムシードによるトレーニング実行間のパフォーマンスの強いばらつきを示すことができる。
我々は、悪いパフォーマーのプルーニングにより、大量のハイパーパラメータ設定を探索するのが良いか、あるいは、繰り返しを用いて収集結果の品質を目標とする方がよいかをベンチマークする。
論文 参考訳(メタデータ) (2020-07-29T05:12:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。