論文の概要: Cross-Problem Parameter Transfer in Quantum Approximate Optimization Algorithm: A Machine Learning Approach
- arxiv url: http://arxiv.org/abs/2504.10733v1
- Date: Mon, 14 Apr 2025 21:56:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:11:11.345780
- Title: Cross-Problem Parameter Transfer in Quantum Approximate Optimization Algorithm: A Machine Learning Approach
- Title(参考訳): 量子近似最適化アルゴリズムにおけるクロスプロブレムパラメータ移動:機械学習アプローチ
- Authors: Kien X. Nguyen, Bao Bach, Ilya Safro,
- Abstract要約: 我々は、MaxCutの事前訓練されたQAOAパラメータをそのまま使用することができるか、最大独立セット(MIS)回路を暖められるかを検討する。
実験結果から,このようなパラメータ転送が要求される最適化イテレーションの回数を大幅に削減できることが示唆された。
- 参考スコア(独自算出の注目度): 0.7560883489000579
- License:
- Abstract: Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising candidates to achieve the quantum advantage in solving combinatorial optimization problems. The process of finding a good set of variational parameters in the QAOA circuit has proven to be challenging due to multiple factors, such as barren plateaus. As a result, there is growing interest in exploiting parameter transferability, where parameter sets optimized for one problem instance are transferred to another that could be more complex either to estimate the solution or to serve as a warm start for further optimization. But can we transfer parameters from one class of problems to another? Leveraging parameter sets learned from a well-studied class of problems could help navigate the less studied one, reducing optimization overhead and mitigating performance pitfalls. In this paper, we study whether pretrained QAOA parameters of MaxCut can be used as is or to warm start the Maximum Independent Set (MIS) circuits. Specifically, we design machine learning models to find good donor candidates optimized on MaxCut and apply their parameters to MIS acceptors. Our experimental results show that such parameter transfer can significantly reduce the number of optimization iterations required while achieving comparable approximation ratios.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、組合せ最適化問題の解法における量子優位性を実現する最も有望な候補の1つである。
QAOA回路で良い変動パラメータを見つける過程は、不毛の高原のような複数の要因のために困難であることが証明されている。
その結果、パラメータ転送可能性の活用への関心が高まっており、ある問題インスタンスに最適化されたパラメータセットが別の問題インスタンスに転送される。
しかし、ある問題のクラスから別のクラスにパラメータを転送できるだろうか?
十分に研究された問題のクラスから学んだパラメータセットの活用は、あまり研究されていないものをナビゲートし、最適化のオーバーヘッドを減らし、パフォーマンスの落とし穴を軽減するのに役立つ。
本稿では,MaxCutの事前学習したQAOAパラメータが,MIS(Maximum Independent Set)回路の温暖化に利用できるかを検討する。
具体的には、機械学習モデルを設計し、MaxCutに最適化された優れたドナー候補を見つけ、それらのパラメータをMISアクセプタに適用する。
実験の結果, パラメータ移動は, 近似比を同等に保ちながら, 必要な最適化イテレーションの回数を大幅に削減できることがわかった。
関連論文リスト
- Linearly simplified QAOA parameters and transferability [0.6834295298053009]
量子近似アルゴリズム最適化(QAOA)は、量子コンピュータを用いて最適化問題を解く方法を提供する。
ランダムイジングモデルのインスタンスと最大カット問題のインスタンスに対して得られた数値結果について述べる。
論文 参考訳(メタデータ) (2024-05-01T17:34:32Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm [1.0971022294548696]
量子近似最適化アルゴリズム(QAOA)は、量子拡張最適化による量子優位性を達成するための最も有望な候補の1つである。
本研究では,5種類のグラフ埋め込み手法を適用し,パラメータ転送可能性に対する適切なドナー候補を決定する。
この手法を用いて,パラメータ最適化に要するイテレーション数を効果的に削減し,目標問題に対する近似解を桁違いに高速化する。
論文 参考訳(メタデータ) (2024-01-12T16:01:53Z) - Probabilistic tensor optimization of quantum circuits for the
max-$k$-cut problem [0.0]
本稿では,変分量子アルゴリズムにおけるパラメータ化回路の最適化手法を提案する。
本稿では,量子近似最適化アルゴリズム (QAOA) を最大$k$-cut問題に適用した例について述べる。
論文 参考訳(メタデータ) (2023-10-16T12:56:22Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
最適化なしでパラメータを設定するための教師なし機械学習手法について検討する。
繰り返しに使用するQAOAパラメータの数が3ドルに制限された場合、これらをRecursive-QAOAで3ドルまで紹介します。
我々は、アングルを広範囲に最適化し、多数のサーキットコールを省く場合と同じような性能を得る。
論文 参考訳(メタデータ) (2022-02-18T19:55:42Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Reducing the Variance of Gaussian Process Hyperparameter Optimization
with Preconditioning [54.01682318834995]
プレコンディショニングは、行列ベクトル乗算を含む反復的な方法にとって非常に効果的なステップである。
プレコンディショニングには、これまで検討されていなかった付加的なメリットがあることを実証する。
基本的に無視可能なコストで、同時に分散を低減することができる。
論文 参考訳(メタデータ) (2021-07-01T06:43:11Z) - Implicit differentiation for fast hyperparameter selection in non-smooth
convex learning [87.60600646105696]
内部最適化問題が凸であるが非滑らかである場合の一階法を研究する。
本研究では, ヤコビアンの近位勾配降下と近位座標降下収率列の前方モード微分が, 正確なヤコビアンに向かって収束していることを示す。
論文 参考訳(メタデータ) (2021-05-04T17:31:28Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。